Name: \qquad
PC: Inverses of Matrices
Date:
Ms. Loughran

Do Now:

$$
\begin{gathered}
3 \times 2 \\
{\left[\begin{array}{cc}
3 & -4 \\
10 & 16 \\
26 & 46
\end{array}\right]} \\
{\left[\begin{array}{cccc}
2 \times 4 \\
70 & -20 & 10 & 60 \\
72 & -24 & 12 & 72
\end{array}\right]}
\end{gathered}
$$

1. $A=\left[\begin{array}{ccc}0 & -1 & 0 \\ 4 & 0 & 2 \\ 8 & -1 & 7\end{array}\right] \quad B=\left[\begin{array}{cc}2 & 1 \\ -3 & 4 \\ 1 & 6\end{array}\right]$
2. $A=\left[\begin{array}{l}2 \times \mid \\ 10 \\ 12\end{array}\right] \quad B=\left[\begin{array}{llll}6 & -2 & 1 & 6\end{array}\right]$

The identity matrix of a square matrix has entries of 1 on its main diagonal and 0 's as all other entries.
I_{2} means the identity matrix of a 2×2 matrix, I_{3} means the identity matrix of a 3×3 matrix and so on.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Let A be an $n \times n$ matrix. If there exists a matrix A^{-1} such that $A A^{-1}=I_{n}=A^{-1} A, A^{-1}$ is called the inverse of A.

1. Show that B is the inverse of A, where

$$
\begin{gathered}
\left.A=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right] \text { and } \quad B=\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right] \quad \begin{array}{r}
-1+2 \\
2-2 \\
\\
\text { Plan: } A B=B A=I_{2} \\
-1+1 \\
2-1
\end{array}\right]=B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2}
\end{gathered}
$$

2. Show that B is the inverse of A, where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right]
$$

Plan: $A B=B A=I_{2}$

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

3. Show that B is the inverse of A, where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & -1 \\
6 & -2 & -3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
-2 & -3 & 1 \\
-3 & -3 & 1 \\
-2 & -4 & 1
\end{array}\right]
$$

$$
\left.P\right|_{G n}: A B=B A=I_{3} \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
A B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad B A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3}
$$

To find the inverse of a 2×2 matrix we are going to use the determinant.

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then the determinant of A is $a d-b c$, and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
4. Find A^{-1} and verify that $A A^{-1}=A^{-1} A=I_{2}$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right] \quad \operatorname{det}(A)=|A|=4(3)-5(2)=2 \\
& \begin{array}{c}
6-5 \\
-10+10 \\
3-3 \\
-5+6
\end{array} \\
& \left.A A^{-1}=\frac{1}{2}\left[\begin{array}{cc}
3 & -5 \\
-2 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \begin{array}{cc}
\frac{3}{2} & -\frac{5}{2} \\
-1 & 2
\end{array}\right] \\
& A^{-1} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

5. Find the inverse of A.

$$
A=\left[\begin{array}{cc}
7 & -4 \\
8 & 0
\end{array}\right] \operatorname{det}(A)=|A|=7(0)-8(-4)=32
$$

$$
A^{-1}=\frac{1}{32}\left[\begin{array}{cc}
0 & 4 \\
-8 & 7
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{1}{8} \\
-\frac{1}{4} & \frac{7}{32}
\end{array}\right]
$$

6. Find the inverse of B, if it exists.

$$
\begin{aligned}
& B=\left[\begin{array}{cc}
8 & 4 \\
-4 & -2
\end{array}\right] \quad \begin{aligned}
|B| & =8(-2)-(-4)(4) \\
& =-1 b+16=0
\end{aligned} \\
& B \text { is not invertible, meaning it } \\
& \text { does not have an inverse. }
\end{aligned}
$$

We can use inverses to solve systems of linear equations.

If A is an invertible matrix (if A has an inverse), the system of linear equations represented by $A X=B$ has a unique solution:

$$
\begin{aligned}
& \begin{array}{l}
A X=B \\
I X=A^{-1} \cdot B
\end{array} \\
& \begin{array}{c}
A^{-1} \cdot A X=A^{-1} \cdot B \\
\text { must be in this order } \\
\text { matrices } 16 \text { is not } \\
\text { commutative }
\end{array}
\end{aligned}
$$

7. Solve the system using the inverse, if possible.

Plan: $X=A^{-1} \cdot B$

$$
\begin{aligned}
& 2 x-5 y=15 \\
& 3 x-6 y=36
\end{aligned}
$$

$$
\begin{array}{cc}
A & X \\
{\left[\begin{array}{ll}
2 & -5 \\
3 & -6
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
15 \\
36
\end{array}\right]} \\
\begin{array}{c}
\text { need } A^{-1} \\
\operatorname{det}(A)=-12-(-15)=3 \\
A^{-1}=\frac{1}{3}\left[\begin{array}{ll}
-6 & 5 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
-2050 \\
-15+24 \\
-1 & \frac{2}{3}
\end{array}\right]
\end{array} \quad X=A^{-1} \cdot B=\left[\begin{array}{c}
30 \\
9
\end{array}\right]
\end{array}
$$

8. Solve the system using the inverse, if possible.

$$
\begin{aligned}
& 3 x+4 y=-2 \\
& 5 x+3 y=4
\end{aligned}
$$

$$
\begin{array}{cc}
A & X \\
{\left[\begin{array}{ll}
3 & 4 \\
5 & 3
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-2 \\
4
\end{array}\right]}
\end{array}
$$

$$
\begin{aligned}
& |A|=3(3)-4(s)=-11 \\
& A^{-1}=\frac{1}{-11}\left[\begin{array}{cc}
3 & -4 \\
-5 & 3
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{-11} & \frac{4}{11} \\
\frac{5}{11} & -\frac{3}{11}
\end{array}\right] \quad X=A^{-1} \cdot B=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] \quad \begin{array}{l}
x=2 \\
y=-2
\end{array}
\end{aligned}
$$

Homework: Textbook pp. 625-626 \#2-16 even, 38, 40, 46, 48
(1) $x=-4, y=22$
(3) $x=2, y=3$
(5) a) $\left[\begin{array}{ll}3 & 2 \\ 1 & 7\end{array}\right]$
b) $\left[\begin{array}{cc}-1 & 0 \\ 3 & -9\end{array}\right]$ c) $\left[\begin{array}{ll}3 & -3 \\ 6 & -3\end{array}\right]$ d) $\left[\begin{array}{cc}-1 & -1 \\ 8 & -19\end{array}\right]$
(7) $a)\left[\begin{array}{cc}7 & 3 \\ 1 & 9 \\ -2 & 15\end{array}\right]$
b) $\left[\begin{array}{cc}5 & -5 \\ 3 & -1 \\ -4 & -5\end{array}\right]$ d) $\left.\left[\begin{array}{cc}18 & -3 \\ 6 & 12 \\ -9 & 15\end{array}\right] d\right)\left[\begin{array}{ccc}14 & -11 \\ 8 & 2 \\ -11 & -5\end{array}\right]$
(9)
a) $\left[\begin{array}{rrrrr}3 & 3 & -2 & 1 & 1 \\ -25 & 7 & -6 & -8\end{array}\right]$
b) $\left[\begin{array}{ccccc}1 & 1 & 0 & -1 & 1 \\ 4 & -3 & -11 & 6 & 6\end{array}\right]$
c) $\left[\begin{array}{ccccc}6 & 6 & -3 & 0 & 3 \\ 3 & 3 & -6 & 0 & -3\end{array}\right] d$
d) $\left[\begin{array}{ccccc}4 & 4 & -1 & -2 & 3 \\ 9 & -5 & -24 & 12 & 11\end{array}\right]$
(11) $\left[\begin{array}{cc}-6 & -9 \\ -1 & 0 \\ 17 & -10\end{array}\right]$ (11) $\left[\begin{array}{cc}3 & 3 \\ -\frac{1}{2} & 0 \\ -\frac{13}{2} & \frac{11}{2}\end{array}\right]$

$$
\begin{array}{ll}
\text { 2. } x=13, y=12 & \text { 4. } x=-4, y=9
\end{array}
$$

6. (a) $\left[\begin{array}{rr}-2 & 0 \\ 6 & 3\end{array}\right] \quad$ (b) $\left[\begin{array}{rr}4 & 4 \\ -2 & -1\end{array}\right]$
(c) $\left[\begin{array}{ll}3 & 6 \\ 6 & 3\end{array}\right] \quad$ (d) $\left[\begin{array}{rr}9 & 10 \\ -2 & -1\end{array}\right]$
7. (a) $\left[\begin{array}{rrr}4 & -2 & 5 \\ -4 & 0 & 2\end{array}\right] \quad$ (b) $\left[\begin{array}{rrr}0 & 4 & -3 \\ 2 & -2 & 6\end{array}\right]$
(c) $\left[\begin{array}{rrr}6 & 3 & 3 \\ -3 & -3 & 12\end{array}\right] \quad$ (d) $\left[\begin{array}{rrr}2 & 9 & -5 \\ 3 & -5 & 16\end{array}\right]$
8. (a) $\left[\begin{array}{r}-1 \\ 8 \\ 1\end{array}\right] \quad$ (b) $\left[\begin{array}{r}7 \\ -4 \\ -3\end{array}\right] \quad$ (c) $\left[\begin{array}{r}9 \\ 6 \\ -3\end{array}\right] \quad$ (d) $\left[\begin{array}{r}17 \\ -6 \\ -7\end{array}\right]$
9. $\left[\begin{array}{rr}-2 & -\frac{5}{2} \\ 0 & 0 \\ 5 & -\frac{7}{2}\end{array}\right]$ 14. $\left[\begin{array}{rr}2 & -5 \\ -5 & 0 \\ 5 & 6\end{array}\right]$
$\left.\begin{array}{l}\text { (21) } \\ \begin{array}{lll}\text { not } \\ \text { possible }\end{array} \\ {\left[\begin{array}{ccc}1 & 0 & 0\end{array}\right]}\end{array} \begin{array}{cc}3 & -4 \\ 10 & 16 \\ 26 & 46\end{array}\right]$ (23) $\left[\begin{array}{cc}-1 & 19 \\ 4 & -27 \\ 0 & 14\end{array}\right](24)\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -10\end{array}\right]$
10. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \\ 2\end{array}\right]$
11. $\left[\begin{array}{llll}60 & -20 & 10 & 60 \\ 72 & -24 & 12 & 72\end{array}\right]$
12. $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
13. Not possible
