Name:
PC: Applications of Matrices and Determinants

Date:
Ms. Loughran

Do Now:

1. Given: $A=\left[\begin{array}{ccc}5 & 0 & -3 \\ 0 & 12 & 4 \\ 1 & 6 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}10 & -5 & 5 \\ 30 & 0 & 10 \\ 0 & 10 & 1\end{array}\right]$
(a) Find $A B$.
(b) Find $\operatorname{det}(A)$

$$
\left[\begin{array}{ccc}
50 & -55 & 22 \\
360 & 40 & 124 \\
190 & 25 & 68 \\
-\frac{36}{-36}+120+0
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{det}(A) & =180-84 \\
& =96
\end{aligned}
$$

$$
\operatorname{det}(A B)=62,400
$$

The area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by

$$
\begin{aligned}
& \text { Area }= \pm \frac{1}{2} \text { determinant of }\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right] \\
& \text { licates that the annronriate sign should be }
\end{aligned}
$$

where the symbol \pm indicates that the appropriate sign should be chosen to yield a positive area.
you have to chose $+\frac{1}{2}$ or $-\frac{1}{2}$ based on the sign of the determinant if det is (t) use $+\frac{1}{2}$ if Ret is $\Theta \underset{(1,0),(2,2)}{\Theta}$ and $(4,3)$. $-\frac{1}{2}$

1. Find the area of a triangle whose

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
2 & 2 & 1 & 0 \\
4 & 3 & 1
\end{array}\right] 4 \begin{array}{lll}
3+3+0 \\
4 & 3
\end{array} \operatorname{det}=8-11=-3} \\
& \frac{2+0+6}{8} \\
& A=-\frac{1}{2}(-3)=\frac{3}{2}
\end{aligned}
$$

2. Find the area of a triangle whose vertices are $(-3,5),(2,6)$ and $(3,-5)$.

Test for Collinear Points: Three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are collinear (lie on the same line) if and only if

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0 \quad(\text { the determinant }=0)
$$

3. Determine whether the points $\frac{-5}{7-10-2},(1,1)$ and $(7,5)$ lie on the same line.

$$
-2-14+5
$$

$$
-11
$$

$$
d c t=-11-(-5) \neq 0
$$

they are not collinear bl the $d t t \neq 0$
4. Determine whether the points $-3 \mid$

$$
\operatorname{det}=-21-(-21)=0
$$

yesthey are collinear.

The test for collinear points can be adapted to another use. If you have two points on a rectangular coordinate system, you can find the equation of the line passing through the two points.

Steps (1) set up matrix $\left[\begin{array}{lll}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right]$
(2) find determinant
(3) set determinant $=0$
5. Find an equation of a line that passes through $(2,4)$ and $(-1,3)$.

eq.of line:

$$
x-3 y+10=0
$$

$$
\begin{array}{cc}
4 x-y+6 \quad \begin{array}{c}
\text { Standard } \\
\text { form: }
\end{array} \quad x-3 y=-10 \\
\text { slope intruent } x+10=3 y \\
\text { form } \quad x+\frac{x}{3}+\frac{n}{3}=y
\end{array}
$$

6. Find an equation of a line that passes through $(4,3)$ and $(2,2)$.

Homework: Textbook pp.646-647 \#s 5, 7, 23, 25, 27, 29 (For 23 and 25, determine if those points are collinear without your calculator.)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
x & y & 1 \\
4 & 3 & 1 \\
2 & 2 & 1
\end{array}\right]_{2}^{x} \begin{array}{c}
x \\
4 \\
3 x+2 y+8
\end{array}} \\
& {\left[\begin{array}{lll}
x & y & 1 \\
4 & 3 & 1 \\
2 & 2 & 1
\end{array}\right]_{3 x+2 y+8}^{x} \begin{array}{l}
y \\
y \\
2
\end{array}} \\
& \begin{array}{ll}
\text { dep }=3 x+2 y+8-(6+2 x+4 y) & \\
\text { dst }=3 x+2 y+8-6-2 x-4 y & \text { eq.of in } \\
\text { dep }=x-2 y+2 & 0=x-2 y+2
\end{array} \\
& \begin{array}{ll}
\text { dep }=3 x+2 y+8-(6+2 x+4 y) & \\
\text { set }=3 x+2 y+8-6-2 x-4 y & \text { eq.04ine } \\
\text { set }=x-2 y+2 & 0=x-2 y+2
\end{array} \\
& \begin{array}{lll}
\text { dep }= & 3 x+2 y+8-(6+2 x+4 y) & \\
\text { dst }=3 x+2 y+8-6-2 x-4 y & \text { eq.04 one } \\
\text { dep }=x-2 y+2 & 0=x-2 y+2
\end{array} \\
& \begin{array}{ll}
\text { dst }=3 x+2 y+8-(6+2 x+4 y) & \\
\text { dep }=3 x+2 y+8-6-2 x-4 y & \text { eq.04ine } \\
\text { set }=x-2 y+2 & 0=x-2 y+2
\end{array}
\end{aligned}
$$

8.4 III EXERCHES

In Exercises 1-16, find the determinant of the matrix.

1. [5] det $=5$
2. $[-8]$
3. $\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right] \quad \operatorname{det}=5$
4. $\left[\begin{array}{rr}-3 & 1 \\ 5 & 2\end{array}\right]$
5. $\left[\begin{array}{rr}5 & 2 \\ -6 & 3\end{array}\right]$ det $=27$
6. $\left[\begin{array}{rr}2 & -2 \\ 4 & 3\end{array}\right]$
7. $\left[\begin{array}{rr}-7 & 6 \\ 1 & 3\end{array}\right] \operatorname{det}=-24$
8. $\left[\begin{array}{rr}4 & -3 \\ 0 & 0\end{array}\right]$
9. $\left[\begin{array}{ll}2 & 6 \\ 0 & 3\end{array}\right] \quad d e t=6$
10. $\left[\begin{array}{rr}2 & -3 \\ -6 & 9\end{array}\right]$
11. $\left[\begin{array}{rrr}2 & -1 & 0 \\ 4 & 2 & 1 \\ 4 & 2 & 1\end{array}\right] d e t=0$
12. $\left[\begin{array}{rrr}-2 & 2 & 3 \\ 1 & -1 & 0 \\ 0 & 1 & 4\end{array}\right]$
13. $\left[\begin{array}{rrr}6 & 3 & -7 \\ 0 & 0 & 0 \\ 4 & -6 & 3\end{array}\right] \operatorname{det}=0$
14. $\left[\begin{array}{rrr}1 & 1 & 2 \\ 3 & 1 & 0 \\ -2 & 0 & 3\end{array}\right]$
15. $\left[\begin{array}{rrr}-1 & 2 & -5 \\ 0 & 3 & 4 \\ 0 & 0 & 3\end{array}\right]$ det $=-916$
16. $\left[\begin{array}{rrr}1 & 0 & 0 \\ -4 & -1 & 0 \\ 5 & 1 & 5\end{array}\right]$

In Exercises 17-20, use the matrix capabilities of a graphing utility to find the determinant of the matrix.
17. $\left[\begin{array}{rrr}0.3 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 \\ -0.4 & 0.4 & 0.3\end{array}\right]$
18. $\left[\begin{array}{rrr}0.1 & 0.2 & 0.3 \\ -0.3 & 0.2 & 0.2 \\ 0.5 & 0.4 & 0.4\end{array}\right]$
19. $\left[\begin{array}{rrr}1 & 4 & -2 \\ 3 & 6 & -6 \\ -2 & 1 & 4\end{array}\right]$
20. $\left[\begin{array}{rrr}2 & 3 & 1 \\ 0 & 5 & -2 \\ 0 & 0 & -2\end{array}\right]$

In Exercises 21-24, find all (a) minors and (b) cofactors of the matrix.
21. $\left[\begin{array}{rr}3 & 4 \\ 2 & -5\end{array}\right]$
22. $\left[\begin{array}{rr}11 & 0 \\ -3 & 2\end{array}\right]$
23. $\left[\begin{array}{rrr}3 & -2 & 8 \\ 3 & 2 & -6 \\ -1 & 3 & 6\end{array}\right]$
24. $\left[\begin{array}{rrr}-2 & 9 & 4 \\ 7 & -6 & 0 \\ 6 & 7 & -6\end{array}\right]$

In Exercises 25-30, find the determinant of the matrix by the method of expansion by cofactors. Expand using the indicated row or column.
25. $\left[\begin{array}{rrr}-3 & 2 & 1 \\ 4 & 5 & 6 \\ 2 & -3 & 1\end{array}\right]$
(a) Row 1
(b) Column 2
26. $\left[\begin{array}{rrr}-3 & 4 & 2 \\ 6 & 3 & 1 \\ 4 & -7 & -8\end{array}\right]$
(a) Row 2
(b) Column 3
27. $\left[\begin{array}{rrr}5 & 0 & -3 \\ 0 & 12 & 4 \\ 1 & 6 & 3\end{array}\right]$
(a) Row 2
(b) Column 2
28. $\left[\begin{array}{rrr}10 & -5 & 5 \\ 30 & 0 & 10 \\ 0 & 10 & 1\end{array}\right]$
(a) Row 3
(b) Column 1
29. $\left[\begin{array}{rrrr}6 & 0 & -3 & 5 \\ 4 & 13 & 6 & -8 \\ -1 & 0 & 7 & 4 \\ 8 & 6 & 0 & 2\end{array}\right]$
(a) Row 2
(b) Column 2
30. $\left[\begin{array}{rrrr}10 & 8 & 3 & -7 \\ 4 & 0 & 5 & -6 \\ 0 & 3 & 2 & 7 \\ 1 & 0 & -3 & 2\end{array}\right]$
(a) Row 3
(b) Column I

In Exercises 31-40, find the determinant of the matrix. Expand by cofactors on the row or column that appears to make the computations easiest.
31. $\left[\begin{array}{rrr}1 & 4 & -2 \\ 3 & 2 & 0 \\ -1 & 4 & 3\end{array}\right]$
32. $\left[\begin{array}{rrr}2 & -1 & 3 \\ 1 & 4 & 4 \\ 1 & 0 & 2\end{array}\right]$
33. $\left[\begin{array}{rrr}2 & 4 & 6 \\ 0 & 3 & 1 \\ 0 & 0 & -5\end{array}\right]$
34. $\left[\begin{array}{rrr}-3 & 0 & 0 \\ 7 & 11 & 0 \\ 1 & 2 & 2\end{array}\right]$

47-50 $=$ Solve for x.
47. $\left|\begin{array}{ccc}x & 12 & 13 \\ 0 & x-1 & 23 \\ 0 & 0 & x-2\end{array}\right|=0$
48. $\left|\begin{array}{ccc}x & 1 & 1 \\ 1 & 1 & x \\ x & 1 & x\end{array}\right|=0$
49. $\left|\begin{array}{ccc}1 & 0 & x \\ x^{2} & 1 & 0 \\ x & 0 & 1\end{array}\right|=0$
50. $\left|\begin{array}{ccc}a & b & x-a \\ x & x+b & x \\ 0 & 1 & 1\end{array}\right|=0$

