Date: _____ Ms. Loughran

1. Find
$$\begin{pmatrix} c & a & t & c & a \\ d & o & g & d & 0 \\ e & m & u & e & m \end{pmatrix}$$

2. Find A^{-1} .

$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$

$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$

$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$

$$A^{-1} = ps - qr \begin{bmatrix} s & -q \\ -r & p \end{bmatrix} = \begin{bmatrix} ps - qr & ps - qr \\ -rr & ps - qr & ps - qr \end{bmatrix}$$

$$3. \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \cdot \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix} = \begin{bmatrix} ag + bi + ck & ah + bj + cl \\ dg + ci + fK & dh & ej & fl \end{bmatrix}$$

Name: ______ PC

 $\frac{\sin^2\theta + \cos^2\theta = 1}{-\cos^2\theta - \cos^2\theta}$ $\frac{\sin^2\theta = 1 - \cos^2\theta}{\sin^2\theta = 1 - \cos^2\theta}$

Name: _____ PC: Trigonometric Identities Date: _____ Ms. Loughran

The Pythagorean Identities

$$\begin{array}{c} \sin^{2}\theta + \cos^{2}\theta = 1 \\ \tan^{2}\theta + 1 = \sec^{2}\theta \\ \cot^{2}\theta + 1 = \csc^{2}\theta \end{array}$$

$$\begin{array}{c} \sin^{2}\theta + \cos^{2}\theta = 1 \\ -\sin^{2}\theta \\ \cos^{2}\theta = 1 \\ \cos^{2}\theta = 1 \\ \cos^{2}\theta \\ \cos^{2}\theta = 1 \\ \cos^{2}\theta \end{array}$$

You are familiar with the following reciprocal identities:

Secant
$$\sec \theta = \frac{1}{\cos \theta}, \cos \theta \neq 0$$
 $\csc \theta = \frac{1}{\sin \theta}, \sin \theta \neq 0$ $\cot \theta = \frac{1}{\tan \theta}, \tan \theta \neq 0$

And the quotient identities:

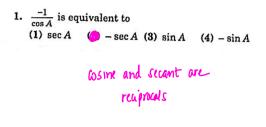
$$\tan \theta = \frac{\sin \theta}{\cos \theta}, \cos \theta \neq 0$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}, \sin \theta \neq 0$

An identity is an equation that is true for all permissible replacements of the variable.

Proving an identity:

To prove that a trigonometric statement is an identity, note:

- 1. The object is to show that the two sides of the statement are equivalent.
 - ⇒ You may work on only one side and show that it is equivalent to the other.
 > Work on the more complicated side.
 - ⇒ You may work on the two sides independently until you arrive at equivalent expressions.
 - You may not perform operations involving the two sides simultaneously. You are not solving an equation. That is, never cross the equal sign for any purpose. As a reminder, use a line between sides.
- 2. Use the basic identities to transform one or both sides of the proposed identity.
 - \Rightarrow A general starting point is to rewrite expressions in terms of sine and cosine, but be alert to situations when a Pythagorean substitution is appropriate.
- 3. After replacements have been made, do the algebra suggested by the form of the expression.
 - \Rightarrow If there is a complex fraction, simplify it.
 - \Rightarrow If there are two fractions, combine them.
 - \Rightarrow Look for possibilities of factoring.



2.
$$\frac{\cot\theta}{\csc\theta}$$
 is equivalent to
(1) $\sec\theta$ (2) $\sin\theta$ ($\bigcirc \cos\theta$ (4) $\csc\theta$

$$\frac{\frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta}} = \frac{\cos \theta}{\sin \theta} \div \frac{1}{\sin \theta}$$
$$\frac{\cos \theta}{\frac{\cos \theta}{\sin \theta}} \cdot \frac{\sin \theta}{1} = \cos \theta$$

3. $\frac{\sec\theta}{\csc\theta}$ is equivalent to (1) $\sin\theta$ (2) $\cos\theta$ (4) $\tan\theta$ (4) $\cot\theta$

$$\frac{\frac{L}{\cos\theta}}{\frac{L}{\sin\theta}} = \frac{L}{\cos\theta} = \frac{L}{\sin\theta}$$

$$\frac{1}{\sin\theta} = \frac{1}{\frac{1}{\cos\theta}} = \frac{1}{\cos\theta} = \tan\theta$$

4. $\frac{\sin\theta}{\tan\theta}$ is equivalent to (1) $-\cos\theta$ (3) $1 - \cos\theta$ (6) $\cos\theta$ (4) $1 + \cos\theta$

$$\frac{\sin \theta}{\sin \theta} = \sin \theta \div \frac{\sin \theta}{\cos \theta}$$
$$\frac{\sin \theta}{\sin \theta} = \cos \theta$$

7. The expression
$$\frac{\tan x}{\sec^2 x}$$
 is equivalent to
(1) $\sin x$ (3) $\frac{\sin^3 x}{\cos x}$

(2) $\sin x \cos x$ (4) $\frac{\cos^3 x}{\sin x}$

$$\frac{\frac{S \ln K}{\cos K}}{\frac{1}{\cos^2 X}} = \frac{S \ln X}{\cos X} \cdot \frac{\cos^2 X}{1}$$
$$= S \ln X \cos X$$

10. $(\cot \theta)(\sec \theta)$ is equivalent to (1) $\tan \theta$ (2) $\cos \theta$ (3) $\cot \theta$ (4) $\csc \theta$

$$\left(\frac{\cos\theta}{\sin\theta} \bigvee \frac{1}{-\cos\theta}\right) = \frac{1}{\sin\theta} = \csc\theta$$

11. $\tan A \cdot \cos A \cdot \csc A$ is equivalent to

(1) 1	(2) ¹ / ₂	(3) sin A	$(4) \ \frac{1}{\sin A}$
<u>ن</u> -	<u>SINA</u> . 605A	68 A .	L = SHTA
(1) (2)	$\cos heta$	(3) tan (cos ²	$\theta - 1$
	$\theta\left(\frac{1}{\sin\theta}\right)$	- <i>(</i> sinð)(si	n Ø)
17. sin ²	· · · ·	110 ² 0 05 ² 0 uivalent to	
(1) $\sin x \cos x$ (2) $\cos x$			

]

(2)
$$\tan x \cos x$$
 (2) $\sec x$

(3) csc x

(1) $\sin x \cos x$

$$\frac{1}{\cos x} = \sec x$$

$$(\mathbf{u},\mathbf{A})$$
18. $\cos A + \frac{\sin^2 A}{\cos A}$ is equivalent to
 $(\mathbf{\omega},\mathbf{A})^{-1}$
(a) $\sec A$ **(3)** $\csc A$ **(4)** $\cos A$

$$\frac{\cos^2 A}{\cos A} + \frac{\sin^2 A}{\cos A} = \frac{\cos^2 A + \sin^2 A}{\cos A} = \frac{1}{\cos A} = \sec A$$

26.
$$\frac{\cos^2 B}{\sin B} + \frac{\sin B}{|(\sin B)|}$$

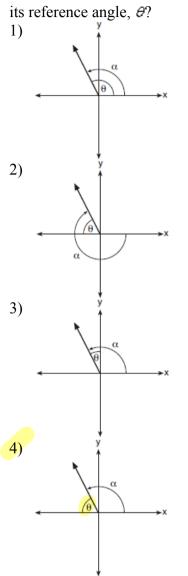
(1) 1 (2) $\frac{1}{\csc B}$ (7) $\frac{1}{\sin B}$ (4) $\cos^2 B$

$$\frac{\cos^2 B + \sin^2 B}{\sin B} = \frac{1}{\sin B}$$

Homework 03-13

Exercise Set A

1 Which diagram represents an angle, α , measuring $\frac{13\pi}{20}$ radians drawn in standard position, and



- 2 Sin 190° is equal to
 - 1) sin 10°
 - 2) cos10°
 - 3) -sin 10°
 - 4) -cos10°

- 3 Which expression is equivalent to $\sin(200^\circ)$?
 - 1) -sin 20°
 - 2) cos 20°
 - 3) cos70°
 - 4) -sin 70°

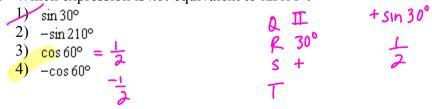
4 Expressed as a function of a positive acute angle, sin 230° is equal to

- $2) \sin 50^{\circ}$
- 3) sin 40°
- 4) $\sin 50^{\circ}$
- 5 The expression sin 240° is equivalent to
 - 1) sin 60°
 - 2) cos60°
 - 3) -sin 60°
 - 4) -cos60°
- 6 Which expression is equivalent to $\sin(-120^\circ)$?
 - 1) sin 60°
 - 2) -sin 60°
 - 3) cos 30º
 - 4) -cos60°

7 Expressed as a function of a positive acute angle, sin(-230°) is equal to

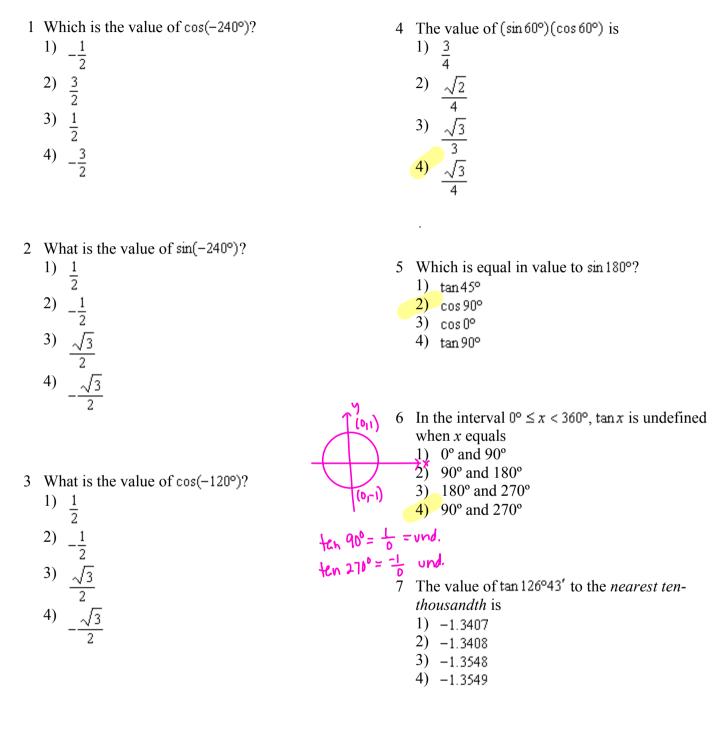
- 1) sin 50°
- 2) -sin 50°
- 3) cos 50°
- 4) -cos50°

8 Which expression is *not* equivalent to sin 150°?



- 9 Which expression is equivalent to cos 120°?
 - 1) cos60°
 - 2) cos 30º
 - 3) -sin 60°
 - 4) $-\sin 30^{\circ}$
- 10 Two straight roads intersect at an angle whose measure is 125°. Which expression is equivalent to the cosine of this angle?
 - 1) cos 35º
 - 2) -cos 35°
 - 3) cos 55°
 - 4) -cos 55°
- 11 Expressed as a function of a positive acute angle, cos(-305°) is equal to
 - 1) -cos 55°
 - 2) cos 55°
 - 3) -sin 55°
 - 4) sin 55°
- 12 The expression tan(-240°) is equivalent to
 - 1) tan 60°
 - 2) -tan 30°
 - 3) -tan 60°
 - 4) tan 30°
- 13 Expressed as a function of a positive acute angle, cot(-120)° is equivalent to
 - 1) -tan 60°
 - 2) cot60°
 - 3) -cot 30°
 - 4) cot 30°
- 14 The expression cot(-200°) is equivalent to
 - 1) -tan 20°
 - 2) tan 70°
 - 3) -cot 20°
 - 4) cot70°

- 15 Express $\sin(-170^\circ)$ as a function of a positive acute angle.
- 16 Express $\sin(-215^\circ)$ as a function of a positive acute angle. Sin 35°
- 17 Express cos(-155°) as a function of a positive acute angle.
 cos 25°
- 18 Express $\cos(-220^\circ)$ as a function of a positive acute angle. - $\cos 40^\circ$
- 19 Express $\tan 230^\circ$ as a function of a positive acute angle. $\tan 50^\circ$
- 20 Express $tan(-140^\circ)$ as a function of a positive acute angle.
- 21 Sketch an angle of 250° in standard position and then express cos 250° as a cosine function of a positive acute angle.



13 Express the product of cos 30° and sin 45° in simplest radical form.

$$\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{4}$$