Name:
PC

Date:
Ms. Loughran

1. Find $|$| c | a | t | c | a |
| :---: | :---: | :---: | :---: | :---: |
| d | o | g | d | 0 |
| e | m | u | e | m |

$$
d e t=c o u+a g e+t d m-(t o e+c g m+a d u)
$$

2. Find A^{-1}.

$$
\begin{array}{cc}
d e t=p s-q r & {\left[\begin{array}{l}
r \\
\hline
\end{array}\right]} \\
A^{-1}=\frac{1}{p s-q r}\left[\begin{array}{cc}
s & -q \\
-r p
\end{array}\right]=\left[\begin{array}{cc}
\frac{s}{p s-q r} & \frac{-q-q r}{-\frac{r}{2}} \\
p s-q r & \frac{p}{p s-q r}
\end{array}\right] \\
\text { 3. }\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \cdot\left[\begin{array}{cc}
g & h \\
i & j \\
k & l
\end{array}\right]=\left[\begin{array}{ccc}
a g+b i+c k & a h+b j+c l \\
d g+e i+f k & d h & e j f l
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
-\cos ^{2} \theta & -\cos ^{2} \theta \\
\hline \sin ^{2} \theta & =1-\cos ^{2} \theta
\end{aligned}
$$

Name: \qquad Date:
Ms. Loughran

$$
\begin{gathered}
\text { The Pythagorean Identities } \\
\left.\star \begin{array}{l}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\tan ^{2} \theta+1=\sec ^{2} \theta \\
\cot ^{2} \theta+1=\csc ^{2} \theta
\end{array}\right\}
\end{gathered} \longrightarrow \begin{gathered}
\left.\begin{array}{c}
\sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right\}=1 \\
-\sin ^{2} \theta
\end{gathered} \quad \begin{aligned}
& \sin ^{2} \theta \\
& \cos ^{2} \theta=1-\sin ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { You are familiar with the following reciprocal identities: } \\
& \text { secant } \\
& \begin{array}{l}
\text { cosecant } \\
\sec \theta \\
\sec
\end{array} \\
&
\end{aligned}
$$

And the quotient identities:

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}, \cos \theta \neq 0 \quad \cot \theta=\frac{\cos \theta}{\sin \theta}, \sin \theta \neq 0
$$

An identity is an equation that is true for all permissible replacements of the variable.

Proving an identity:

To prove that a trigonometric statement is an identity, note:

1. The object is to show that the two sides of the statement are equivalent.
\Rightarrow You may work on only one side and show that it is equivalent to the other.
$>$ Work on the more complicated side.
\Rightarrow You may work on the two sides independently until you arrive at equivalent expressions.
> You may not perform operations involving the two sides simultaneously. You are not solving an equation. That is, never cross the equal sign for any purpose. As a reminder, use a line between sides.
2. Use the basic identities to transform one or both sides of the proposed identity.
\Rightarrow A general starting point is to rewrite expressions in terms of sine and cosine, but be alert to situations when a Pythagorean substitution is appropriate.
3. After replacements have been made, do the algebra suggested by the form of the expression.
\Rightarrow If there is a complex fraction, simplify it.
\Rightarrow If there are two fractions, combine them.
\Rightarrow Look for possibilities of factoring.
4. $\frac{-1}{\cos A}$ is equivalent to
(1) $\sec A \quad-\sec A(3) \sin A \quad$ (4) $-\sin A$

Cosine and secant are
reciprocals
2. $\frac{\cot \theta}{\csc \theta}$ is equivalent to
$\begin{array}{llll}\text { (1) } \sec \theta & \text { (2) } \sin \theta & \text { (1) } \cos \theta & \text { (4) } \csc \theta\end{array}$

$$
\begin{aligned}
& \frac{\frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta}}=\frac{\cos \theta}{\sin \theta} \div \frac{1}{\sin \theta} \\
& \frac{\cos \theta}{\sin \theta} \cdot \frac{\sin \theta}{1}=\cos \theta
\end{aligned}
$$

3. $\frac{\sec \theta}{\csc \theta}$ is equivalent to
$\begin{array}{llll}\text { (1) } \sin \theta & \text { (2) } \cos \theta & \text { (0) } \tan \theta & \text { (4) } \cot \theta\end{array}$

$$
\begin{aligned}
& \frac{\frac{1}{\cos \theta}}{\frac{1}{\sin \theta}}=\frac{1}{\cos \theta} \div \frac{1}{\sin \theta} \\
& \frac{1}{\cos \theta} \cdot \frac{\sin \theta}{1}=\frac{\sin \theta}{\cos \theta}=\tan \theta
\end{aligned}
$$

4. $\frac{\sin \theta}{\tan \theta}$ is equivalent to
(1) $-\cos \theta$
(3) $1-\cos \theta$
($(\cos \theta$
(4) $1+\cos \theta$

$$
\begin{aligned}
\frac{\sin \theta}{\frac{\sin \theta}{\cos \theta}}= & \sin \theta \div \frac{\sin \theta}{\cos \theta} \\
& \sin \theta \cdot \frac{\cos \theta}{\sin \theta}=\cos \theta
\end{aligned}
$$

7. The expression $\frac{\tan x}{\sec ^{2} x}$ is equivalent to
(1) $\sin x$
(3) $\frac{\sin ^{3} x}{\cos x}$
(C) $\sin x \cos x$
(4) $\frac{\cos ^{3} x}{\sin x}$

$$
\begin{array}{r}
\frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos ^{2} x}}=\frac{\sin x}{\cos x} \cdot \frac{\cos ^{2} x}{1} \\
=\sin x \cos x
\end{array}
$$

10. $(\cot \theta)(\sec \theta)$ is equivalent to
(1) $\tan \theta$
(2) $\cos \theta$
(3) $\cot \theta$ (4) $\csc \theta$

$$
\left(\frac{\cos \theta}{\sin \theta}\right)\left(\frac{1}{\cos \theta}\right)=\frac{1}{\sin \theta}=\csc \theta
$$

11. $\tan A \cdot \cos A \cdot \csc A$ is equivalent to
(1) 1
(2) $\frac{1}{2}$
(3) $\sin A$
(4) $\frac{1}{\sin A}$

$$
\frac{\sin A}{\cos A} \cdot \cos A \cdot \frac{1}{\sin A}=1
$$

14. $\sin \theta(\csc \theta-\sin \theta)$ is equivalent to
(1) 1
(3) $\tan \theta-1$
(2) $\cos \theta$
(C) $\cos ^{2} \theta$
$\sin \theta\left(\frac{1}{\sin \theta}-\sin \theta\right)$
$\sin \theta\left(\frac{1}{\sin \theta}\right)-(\sin \theta)(\sin \theta)$

$$
1-\sin ^{2} \theta
$$

$$
\cos ^{2} \theta
$$

17. $\sin ^{2} x+\cos ^{2} x=1$
(1) $\sin x \cos x$
(3) $\csc x$
(2) $\tan x \cos x$
(d) $\sec x$

$$
\frac{1}{\cos x}=\sec x
$$

(\quad As A)
(us. $\frac{\cos A}{1} A+\frac{\sin ^{2} A}{\cos A}$ is equivalent to
${ }^{(\cos A)}(1) 1$
(C) $\sec A$ (3) $\csc A$
(4) $\cos A$

$$
\frac{\cos ^{2} A}{\cos A}+\frac{\sin ^{2} A}{\cos A}=\frac{\cos ^{2} A+\sin ^{2} A}{\cos A}=\frac{1}{\cos A}=\sec A
$$

26. $\frac{\cos ^{2} B}{\sin B}+\frac{\sin B}{1}$ is equivalent to

$$
\begin{array}{llll}
\text { (1) } 1 & \text { (2) } \frac{1}{\csc B} & \text { (c) } \frac{1}{\sin B} & \text { (4) } \cos ^{2} B
\end{array}
$$

$$
\frac{\cos ^{2} B+\sin ^{2} B}{\sin B}=\frac{1}{\sin B}
$$

Homework 03-13

Exercise Set A

1Which diagram represents an angle, α, measuring $\frac{13 \pi}{20}$ radians drawn in standard position, and its reference angle, θ ?
1)

2)

3)

4)

$2 \operatorname{Sin} 190^{\circ}$ is equal to

1) $\sin 10^{\circ}$
2) $\cos 10^{\circ}$
3) $-\sin 10^{\circ}$
4) $-\cos 10^{\circ}$

3 Which expression is equivalent to $\sin \left(200^{\circ}\right)$?

1) $-\sin 20^{\circ}$
2) $\cos 20^{\circ}$
3) $\cos 70^{\circ}$
4) $-\sin 70^{\circ}$

4 Expressed as a function of a positive acute angle, $\sin 230^{\circ}$ is equal to

1) $-\sin 40^{\circ}$
2) $-\sin 50^{\circ}$
3) $\sin 40^{\circ}$
4) $\sin 50^{\circ}$

5 The expression $\sin 240^{\circ}$ is equivalent to

1) $\sin 60^{\circ}$
2) $\cos 60^{\circ}$
3) $-\sin 60^{\circ}$
4) $-\cos 60^{\circ}$

6 Which expression is equivalent to $\sin \left(-120^{\circ}\right)$?

1) $\sin 60^{\circ}$
2) $-\sin 60^{\circ}$
3) $\cos 30^{\circ}$
4) $-\cos 60^{\circ}$

7 Expressed as a function of a positive acute angle, $\sin \left(-230^{\circ}\right)$ is equal to

1) $\sin 50^{\circ}$
2) $-\sin 50^{\circ}$
3) $\cos 50^{\circ}$
4) $-\cos 50^{\circ}$

8 Which expression is not equivalent to $\sin 150^{\circ}$?

1) $\sin 30^{\circ}$
2) $-\sin 210^{\circ}$
Q II
3) $\cos 60^{\circ}=\frac{1}{2}$
4) $-\cos 60^{\circ} \quad-\frac{1}{2}$
R 30°
$+\sin 30^{\circ}$
$S+$
$\frac{1}{2}$

9 Which expression is equivalent to $\cos 120^{\circ}$?

1) $\cos 60^{\circ}$
2) $\cos 30^{\circ}$
3) $-\sin 60^{\circ}$
4) $-\sin 30^{\circ}$

10 Two straight roads intersect at an angle whose measure is 125°. Which expression is equivalent to the cosine of this angle?

1) $\cos 35^{\circ}$
2) $-\cos 35^{\circ}$
3) $\cos 55^{\circ}$
4) $-\cos 55^{\circ}$

11 Expressed as a function of a positive acute angle, $\cos \left(-305^{\circ}\right)$ is equal to

1) $-\cos 55^{\circ}$
2) $\cos 55^{\circ}$
3) $-\sin 55^{\circ}$
4) $\sin 55^{\circ}$

12 The expression $\tan \left(-240^{\circ}\right)$ is equivalent to

1) $\tan 60^{\circ}$
2) $-\tan 30^{\circ}$
3) $-\tan 60^{\circ}$
4) $\tan 30^{\circ}$

13 Expressed as a function of a positive acute angle, $\cot (-120)^{\circ}$ is equivalent to

1) $-\tan 60^{\circ}$
2) $\cot 60^{\circ}$
3) $-\cot 30^{\circ}$
4) $\cot 30^{\circ}$

14 The expression $\cot \left(-200^{\circ}\right)$ is equivalent to

1) $-\tan 20^{\circ}$
2) $\tan 70^{\circ}$
3) $-\cot 20^{\circ}$
4) $\cot 70^{\circ}$

15 Express $\sin \left(-170^{\circ}\right)$ as a function of a positive acute angle.

16 Express $\sin \left(-215^{\circ}\right)$ as a function of a positive acute angle. $\sin 35^{\circ}$

17 Express $\cos \left(-155^{\circ}\right)$ as a function of a positive acute angle.

$$
-\cos 25^{\circ}
$$

18 Express $\cos \left(-220^{\circ}\right)$ as a function of a positive acute angle.

$$
-\cos 40^{\circ}
$$

19 Express $\tan 230^{\circ}$ as a function of a positive acute angle. $\tan 50^{\circ}$

20 Express $\tan \left(-140^{\circ}\right)$ as a function of a positive acute angle.

21 Sketch an angle of 250° in standard position and then express $\cos 250^{\circ}$ as a cosine function of a positive acute angle.

Exercise Set B

1 Which is the value of $\cos \left(-240^{\circ}\right)$?

1) $-\frac{1}{2}$
2) $\frac{3}{2}$
3) $\frac{1}{2}$
4) $-\frac{3}{2}$

2 What is the value of $\sin \left(-240^{\circ}\right)$?

1) $\frac{1}{2}$
2) $-\frac{1}{2}$
3) $\frac{\sqrt{3}}{2}$
4) $-\frac{\sqrt{3}}{2}$

3 What is the value of $\cos \left(-120^{\circ}\right)$?

1) $\frac{1}{2}$
2) $-\frac{1}{2}$
3) $\frac{\sqrt{3}}{2}$
4) $-\frac{\sqrt{3}}{2}$

4 The value of $\left(\sin 60^{\circ}\right)\left(\cos 60^{\circ}\right)$ is

1) $\frac{3}{4}$
2) $\frac{\sqrt{2}}{4}$
3) $\frac{\sqrt{3}}{3}$
4) $\frac{\sqrt{3}}{4}$

5 Which is equal in value to $\sin 180^{\circ}$?

1) $\tan 45^{\circ}$
2) $\cos 90^{\circ}$
3) $\cos 0^{\circ}$
4) $\tan 90^{\circ}$

5) -1.3407
6) -1.3408
7) -1.3548
8) -1.3549

13 Express the product of $\cos 30^{\circ}$ and $\sin 45^{\circ}$ in simplest radical form.

$$
\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}=\frac{\sqrt{6}}{4}
$$

