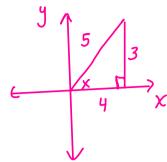
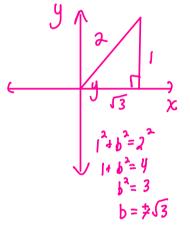
Do Now: From the Exercises section of the Sum and Difference packet #37

37. If x and y are positive acute angles, and $\sin x = \frac{3}{5}$ and $\sin y = \frac{1}{2}$, then $\sin (x + y)$ is equal to

(1)
$$\frac{3\sqrt{3}-4}{10}$$

(3)
$$\frac{12}{25} + \frac{\sqrt{3}}{4}$$


(2)
$$\frac{3\sqrt{3}+4}{10}$$


(4)
$$\frac{12}{25} - \frac{\sqrt{3}}{4}$$

$$Sin(X+y) = Sinx Osy + Osx Siny$$

$$= \left(\frac{3}{5}\right)\left(\frac{3}{2}\right) + \left(\frac{1}{5}\right)\left(\frac{1}{2}\right)$$

$$\frac{3\sqrt{3}}{10} + \frac{4}{10} = \frac{3\sqrt{3} + 4}{10}$$

The General Equation $ax^2 + by^2 = c$

Depending on the values of the coefficients, the general equation $ax^2 + by^2 = c$, where

Values of Coefficients $a = b$ and have the same sign as c	Name of Graph	Example	
		$2x^2 + 2y^2 = 18$ or $x^2 + y^2 = 9$ circle with center at origin and radius = 3	3 3 0 3 x
a ≠ b and have the same sign as c	ellipse	$9x^2 + 25y^2 = 225$ ellipse with center at origin and x-intercepts = ± 5 y-intercepts = ± 3	4-5 O 5 X
a, b have different signs	hyperbola	$x^2 - y^2 = 9$ hyperbola with center at origin and x -intercepts = ± 3 no y -intercepts	-3) O 3 X

Recall: The equation of a parabola contains only one square term: either $y = ax^2 + bx + c$ or $x = ay^2 + by + c$ The equation of a straight line contains no square terms: ax + by = c

EXERCISES_

In 1-14, identify the graph of the given relation as

- (1) a circle
- (3) a hyperbola
- (2) an ellipse
- (4) a parabola
- 1. $4y_{n,\lambda_1,\mu_2,\lambda_2}^2 = 25 4x^2$
- 8. $4x^2 + 16y^2 = 25$
- $2. \ 2x^2 + 3y^2 = 24$
- 3. $x^2 = y^2 + 9$ hypotola (3)
- 9. $x^2 + y = 9$ Parabola (4)
- 10. $2x^2 = 5 2y^2$

- 4. $x^2 = 6 y$ 11. $y^2 = 6 3x^2$ ellips (2)

 5. $4x^2 100 = 25y^2$ 12. $2x^2 9 = 2y^2$ 6. $3y^2 = 6 x^2$ 13. $4x^2 4y^2 = 9$ hypotole (3)

- 7. $3x^2 + 2y^2 = 6$ then (1) 14. $x^2 \frac{y^2}{16} = 1$

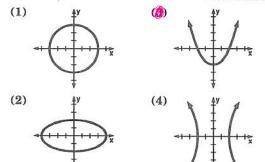
15. Which of the following is the equation of a hyperbola?

- (1) $x^2 = 10 y^2$
- (4) $y^2 = x^2 1$ (4) $4x^2 + y^2 = 9$
- (2) $x = y^2 9$

- 16. The graph of which equation is an ellipse?

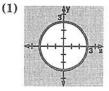
 - (1) $3x^2 4y^2 = 7$ (3) $y = 2x^2 + 3x 5$
 - (2) $\frac{y+6}{x-1} = 3$
- $(4) x^2 + 5y^2 = 2$
- 17. Which is an equation of a circle?

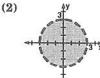
- (1) $2x^2 2y^2 = 18^{\frac{1}{12}}$ (2) $3x^2 + 3y^2 = 21$ (2) $2x^2 + 3y^2 = 36$ (4) $x^2 = y^2 + 16$ hypubole
- 18. Which equation has a hyperbola as its graph?
 - $(1) \ x^2 = 10 + y$
- (2) $x^2 = 10 y^2$
- (3) $3x^2 = 10 2y^2$ (4) $3x^2 = 10 + 2y^2$

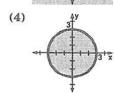

19. Which equation has an ellipse as its graph?

- (1) $2x^2 = 8 3y$ | (3) $2x^2 = 8 3y^2$ | (3) $2x^2 = 8 3y^2$ | (4) 2x = 8 3y | (5) | (6) (7) |
 - (1) $2x^2 + y^2 = 7$ (3) $x^2 y^2 = 10$

 - (2) $x = \frac{y}{8}$
- (4) $5(x^2 + y^2) = 12$


- 21. Which is an equation of a parabola?
- (3) x = 3 + y
- (1) $x^2 = 3 + y^2$ (2) $x = 3 + y^2$ One say we form
- (4) $y^2 = 3x^2 + 3$
- **22.** The graph of the relation $ay = bx^2 + c$ in which neither a nor b is 0 is
 - (1) a parabola
- (3) an ellipse
- (2) a straight line
- (4) a hyperbola
- 23. If a, b, and c are positive unequal numbers, the graph of $ax^2 + by^2 = c$ is
 - (1) a circle
- (B) an ellipse
- (2) a parabola
- (4) a hyperbola
- **24.** The graph of $ax^2 + by^2 = c$, in which a, b, and c are real numbers, is an ellipse if
 - (1) a = b, a > 0, b < 0, c > 0
 - (2) a = b, a > 0, b > 0, c < 0
 - (3) $a \neq b, a > 0, b > 0, c > 0$
 - (4) $a \neq b, a > 0, b < 0, c > 0$
- 25. If $a \neq 0$, $b \neq 0$ and $c \neq 0$, the graph of $ax^2 + by^2 = c$ can not be
 - (1) an ellipse
- (6) a parabola
- (2) a circle
- (4) a hyperbola
- **26.** The graph of the equation $\frac{x^2}{4} + \frac{y^2}{16} = 1$ passes through the point whose coordinates are
- (1) (0,0) (2) (0,2) (3) (0,4) (4) (4,0)
- **27.** Which relation is a function? (has to pass the VLT) happened (1) $\{(x,y)|x^2+y=4\}$ (2) $\{(x,y)|x^2+y^2=4\}$ (4) $\{(x,y)|x^2+4y^2=4\}$
- 28. If the replacement set is the set of real numbers, what is the domain of the relation represented by $\{(x, y) | x^2 + 4y^2 = 16\}$?
 - (1) $\{y \mid -2 \le y \le 2\}$ (3) $\{x \mid -4 \le x \le 4\}$ (2) $\{y \mid -2 < y < 2\}$ (4) $\{x \mid -4 < x < 4\}$
- 29. Which is the graph of a quadratic relation for which the domain consists of all the real numbers?


- **30.** If the graphs of the equations $x^2 + y^2 = 9$ and y = 3are drawn on the same set of axes, what is the total number of points common to both graphs?
 - (1) 1
- (2) 2
- (3) 3
- (4) 0


- 31. When drawn on the same set of axes, the points of intersection of the graphs of $x^2 + y^2 = 16$ and x = 2are located in quadrants
 - (1) I and III
- (3) II and III
- I and IV
- (4) II and IV
- **32.** The graphs of the equations $x^2 + y^2 = 25$ and $y = x^2$ are drawn on the same set of axes. The total number of points common to these graphs is
 - (1) 1
- (2) 2
- (3) 3
- **33.** The graph of $x^2 + y^2 = 25$ and the graph of x-4=0 are drawn on the same set of axes. A point of intersection of the graphs is

- (1) (5,0) (2) (-4,-3) (3) (4,-3) (4) (-3,4)
- **34.** What is the graph of the solution set of $x^2 + y^2 > 9$?

35. Each equation in column A has one of the geometric figures in column B as its graph. List the numbers 1-5 on your answer paper and after each number write the letter that indicates the corresponding graph.

Column A

- (1) $x^2 + y^2 4 = 0$
- (2) $4x^2 + y^2 1 = 0$
- (3) $x^2 y 4 = 0$
- (4) $x^2 + 4y^2 = 0$
- $(5) \ x^2 4y^2 = 0$

Column B

- a. The point (0, 0)
- b. Two straight lines parallel to the y-axis
- c. Two straight lines intersecting at the origin
- d. A parabola that crosses the y-axis at (0, -4)
- e. A circle whose center is the origin and whose radius is 2
- f. An ellipse that crosses the y-axis at (0, 1) and (0, -1)
- g. A hyperbola that crosses the y-axis at (0, 2) and (0, -2)

Homework 04-11

6 Sin
$$2x = 2\sin x \cos x$$
 $x is a post. acute $\frac{2}{7} + 2\pi$

$$= 2\left(\frac{12}{13}\right)\left(\frac{5}{13}\right) \qquad \text{if } adj = 5, \ \text{hyp} = 13$$

$$= 120 \qquad \text{opp} = 12$$

$$= 69$$$

$$\frac{1}{\sqrt{2}}\cos 2x = 1 - 2\sin^2 x \quad \rightarrow I \text{ chose this hornwise hor as } 2x \text{ b/c}$$

$$= -\frac{7}{\sqrt{2}}$$

$$= -\frac{7}{\sqrt{2}}$$

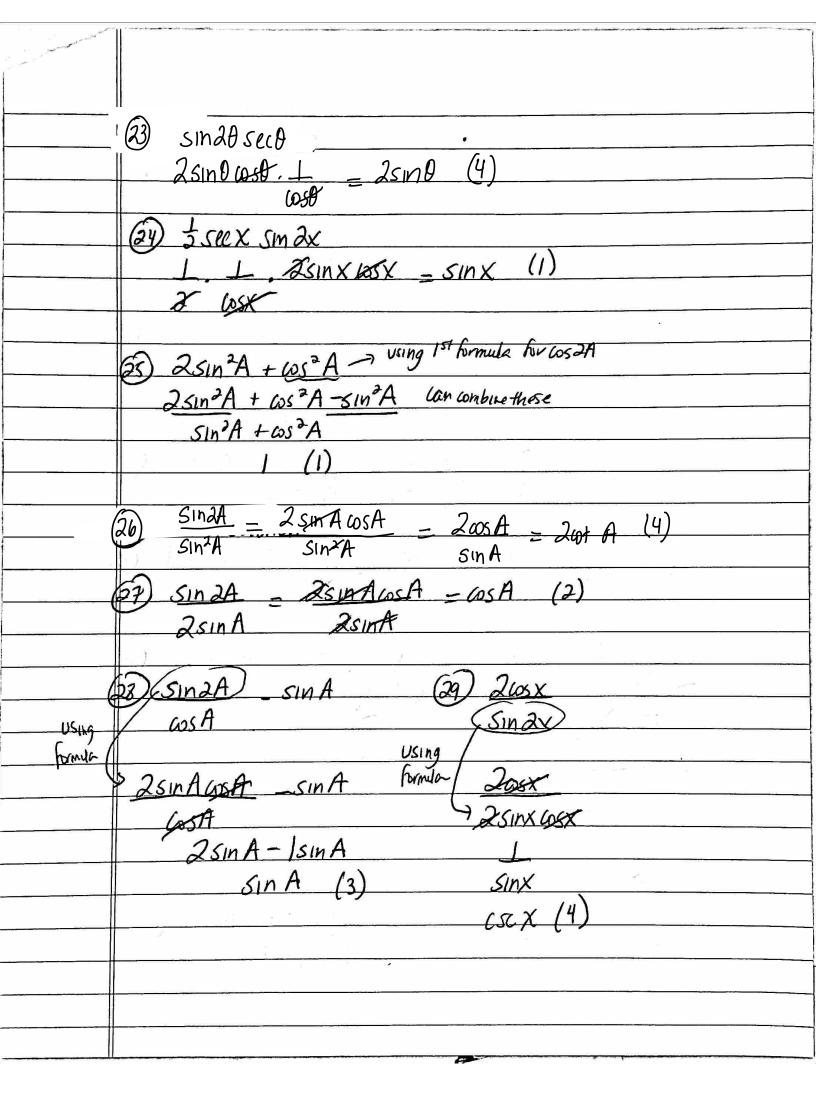
$$= -\frac{7}{\sqrt{2}}$$

(3)
$$tan 2A = 2 tan A = 2(\frac{1}{3}) = \frac{3}{4}$$

 $1 - tan^2 A = 1 - (\frac{1}{3})^2 = \frac{3}{4}$

(10) a)
$$\sin 2A = 2 \sin A \cos A$$
, $\frac{4}{3} + \sin A \Box$

$$2\left(\frac{\sqrt{5}}{3}\right)^{\frac{2}{3}}$$


$$\frac{4\sqrt{5}}{9}$$
A \times

$$x^{2} + 5 = 9$$

$$x^{2} = 4$$

$$x = \pm 2$$

b)
$$\cos 2A = 1 - 2\sin^2 A$$

 $1 - 2\left(\frac{\sqrt{5}}{3}\right)^2 = 1 - 2\left(\frac{5}{9}\right)^2 = 1 - \frac{10}{9} = -\frac{1}{9}$

9
$$sin A cos B + cos A sin B$$

 $(\frac{1}{5})(\frac{3}{17}) + (\frac{3}{5})(\frac{17}{17}) = \frac{32+45}{85} = \frac{77}{85}$

10
$$\omega_{S} = 1 - 2\sin^{3}A = 1 - 2\left(\frac{2}{5}\right)^{3} = 1 - 2\left(\frac{4}{25}\right)$$

$$1 - \frac{18}{25} = \frac{7}{25}$$

$$2\left(\frac{4}{25}\right)^{2} - 1$$

$$2\left(\frac{4}{25}\right)^{2} - 1 = \frac{7}{25}$$

$$2\left(\frac{4}{25}\right)^{2} - 1 = \frac{7}{25}$$

$$2\left(\frac{4}{25}\right)^{2} - 1 = \frac{7}{25}$$

$$2\left(\frac{7}{3}\right)^{2}\left(\frac{7}{3}\right)^{2} = \frac{2\pi}{4}$$