Name:
PC: Circles

Date:
Ms. Loughran

Do Now:

1. Find the length of the line segment determined by points $A(x, y)$ and $C(h, k)$.

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(x-n)^{2}+(y-k)^{2}}
\end{aligned}
$$

An equation of the circle with center (h, k) and radius r is

$$
\begin{aligned}
& \text { If we replace } d \text { with the radius } \\
& r=\sqrt{(x-h)^{2}+(y-k)^{2}} \\
& r^{2}=(x-h)^{2}+(y-k)^{2}
\end{aligned}
$$

This is called the standard form for the equation of the circle. If the center of the circle is the origin, then the equation is

$$
\begin{array}{cc}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
(0,0) & (x-0)^{2}+(y-0)^{2}=r^{2} \\
(h, k) & x^{2}+y^{2}=r^{2}
\end{array}
$$

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \quad \text { with center of }\left(h_{1} k\right)
$$

1. Graph each equation.
(a) $x^{2}+y^{2}=25$

Center: $(0,0)$

(b) $(x-2)^{2}+(y+1)^{2}=16$

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

(h, k)
2. Find an equation of the circle with radius 3 and center ($-1,4$).

$$
(x+1)^{2}+(y-4)^{2}=9
$$

3. Find the center and radius of the circle whose equation is $(x+2)^{2}+(y-3)^{2}=10$.

$$
\begin{aligned}
& \text { center: }(-2,3) \\
& \text { radius }=\sqrt{10}
\end{aligned}
$$

4. Write an equation of the circle whose diameter has endpoints $(0,0)$ and $(6,8)$.
midant: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{2}+y_{z}}{2}\right)$
maps: $\left(\frac{0+b}{2}, \frac{0+8}{2}\right)$

$$
(3,4) * \text { contr o of }
$$

$$
\left.\begin{array}{l}
r=\sqrt{(3-0)^{2}+(4-0)^{2}},(0,0) \\
r=\sqrt{9+16} \\
r=\sqrt{25}=5
\end{array}(x-3)^{2}+(y-4)^{2}=25\right)
$$

5. Points $\mathrm{P}(1,-5)$ and $\mathrm{Q}(-3,3)$ are the endpoints of a diameter of a circle. Find the center, radius, and equation of the circle.

$$
\begin{aligned}
& \text { midpt: }\left(\frac{1+(-3)}{2}, \frac{\left.-\frac{5+3}{2}\right)}{} \quad:(-1,-1)\right. \text { tenter } \\
& r=\sqrt{(1-(-1))^{2}+(-5-(-1))^{2}} \\
& r=\sqrt{4+16} \quad(x-(-1))^{2}+(y-(-1))^{2}=20 \\
& r=\sqrt{20} \\
& r^{2}=20
\end{aligned}
$$

6. Find the center and radius of the circle $x^{2}+y^{2}+4 x-6 y-12=0$.

* would be really to have in that center-radiss form

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& x^{2}+4 x+4+y^{2}-6 y+9=12+4+9 \\
& \quad(x+2)^{2}+(y-3)^{2}=25 \\
& \text { center: }(-2,3) \\
& \text { radius }=5
\end{aligned}
$$

7. Find the center and radius of the circle whose equation is $x^{2}+y^{2}+2 x-6 y+7=0$.

$$
\begin{aligned}
& x^{2}+2 x+1+y^{2}-6 y+9=-7+1+9 \\
& \quad(x+1)^{2}+(y-3)^{2}=3 \\
& \text { center: }(-1,3) \\
& r=\sqrt{3}
\end{aligned}
$$

8. Find the center and radius of the circle whose equation is. $x^{2}+y^{2}+6 y+2=0$

$$
\begin{gathered}
x^{2}+y^{2}+6 y+9=-2+9 \\
x^{2}+(y+3)^{2}=7 \\
\text { center: }(0,-3) \\
r=\sqrt{7}
\end{gathered}
$$

9. Find the center and radius of the circle whose equation is $x^{2}+y^{2}-4 x+10 y+13=0$.

$$
\begin{gathered}
x^{2}-4 x+4+y^{2}+10 y+25=-13+4+25 \\
(x-2)^{2}+(y+5)^{2}=16 \\
\text { center }=(2,-5) \\
r=4
\end{gathered}
$$

10. Find the center and radius of the circle whose equation is $9 x^{2}+12 x+9 y^{2}-77=0$.

$$
\begin{aligned}
\frac{1}{2}\left(\frac{4^{2}}{3}\right) & =\frac{2}{3} \\
\left(\frac{2}{3}\right)^{2} & =\frac{4}{9}
\end{aligned}
$$

$$
\frac{9 x}{9}+\frac{12 x}{9}+\frac{9 y^{2}}{9}=\frac{77}{9}
$$

$$
\begin{aligned}
& \frac{x^{2}+\frac{4}{3} x+\frac{4}{9}+y^{2}=\frac{77}{9}+\frac{4}{9}}{\left(x+\frac{2}{3}\right)^{2}+y^{2}=\frac{81}{9}} \\
& \left(x+\frac{2}{3}\right)^{2}+y^{2}=9 \quad \text { center: }\left(-\frac{2}{3}, 0\right) \\
& r=3
\end{aligned}
$$

Name: \qquad
PC: Special Relations

Date:
Ms. Loughran

The General Equation $a x^{2}+b y^{2}=c$

Depending on the values of the coefficients, the general equation $a x^{2}+b y^{2}=c$, where $a, b, c \neq 0$, describes the graph of a circle, ellipse, or hyperbola.

Recall: The equation of a parabola contains only one square term:
either $y=a x^{2}+b x+c$ or $x=a y^{2}+b y+c$
The equation of a straight line contains no square terms: $a x+b y=c$
EXERCISES

In 1-14, identify the graph of the given relation as
(1) a circle
(3) a hyperbola
(2) an ellipse
(4) a parabola

1. $4 y^{2}=25-4 x^{2} \quad$ ।
2. $4 x^{2}+16 y^{2}=25$
3. $2 x^{2}+3 y^{2}=24 \quad(2)$
4. $x^{2}+y=9 \quad 4$
5. $x^{2}=y^{2}+9 \quad 3$
6. $2 x^{2}=5-2 y^{2} \quad$ ।
7. $x^{2}=6-y \quad 4$
8. $y^{2}=6-3 x^{2} \quad 2$
9. $4 x^{2}-100=25 y^{2} 3$
10. $2 x^{2}-9=2 y^{2} 3$
11. $3 y^{2}=6-x^{2}(2)$
12. $4 x^{2}-4 y^{2}=9 \quad 3$
13. $3 x^{2}+2 y^{2}=6$
14. $x^{2}-\frac{y^{2}}{16}=1$3
15. Which of the following is the equation of a hyperbola?
(1) $x^{2}=10-y^{2}$
(3) $y^{2}=x^{2}-1$
(2) $x=y^{2}-9$
(4) $4 x^{2}+y^{2}=9$
16. The graph of which equation is an ellipse?
(1) $3 x^{2}-4 y^{2}=7$
(3) $y=2 x^{2}+3 x-5$
(2) $\frac{y+6}{x-1}=3$
(4) $x^{2}+5 y^{2}=2$
17. Which is an equation of a circle?
(1) $2 x^{2}-2 y^{2}=18$
(3) $3 x^{2}+3 y^{2}=21$
(4) $x^{2}=y^{2}+16$
(2) $2 x^{2}+3 y^{2}=36$
18. Which equation has a hyperbole as its graph?
(1) $x^{2}=10+y$
(3) $3 x^{2}=10-2 y^{2}$
(2) $x^{2}=10-y^{2}$
(4) $3 x^{2}=10+2 y^{2}$
19. Which equation has an ellipse as its graph?
(1) $2 x^{2}=8-3 y$
(3) $2 x^{2}=8-3 y^{2}$
(4) $2 x=8-3 y$
20. Which is an equation of a circle?
(1) $2 x^{2}+y^{2}=7$
(3) $x^{2}-y^{2}=10$
(2) $x=y$
(4) $5\left(x^{2}+y^{2}\right)=12$
21. Which is an equation of a parabola?
(1) $x^{2}=3+y^{2}$
(3) $x=S+y$
(2) $x=3+y^{2}$
(4) $y^{2}=3 x^{2}+3$
22. The graph of the relation $a y=b x^{2}+c$ in which
neither a nor b is 0 is
(1) a parabola
(3) an ellipse
(2) a straight line
(4) a hyperbola
23. If a, b, and c are positive unequal numbers, the graph of $a x^{2}+b y^{2}=c$ is
(1) a circle
(3) an ellipse
(2) a parabola
(4) a hyperbola
24. The graph of $a x^{2}+b y^{2}=c$, in which a, b, and c are real numbers, is an ellipse if
(1) $a=b, a>0, b<0, c>0$
(2) $a=b, a>0, b>0, c<0$
(3) $a \neq b, a>0, b>0, c>0$
(4) $a \neq b, a>0, b<0, c>0$
25. If $a \neq 0 . b \neq 0$, and $c \neq 0$, the graph of
$a x^{2}+b y^{2}=c$ can not be
(1) an ellipse
(13) a parabola
(2) a circle
(4) a hyperbola
26. The graph of the equation $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$ passes through the point whose coordinates are
(1) $(0,0)$
(2) $(0,2)$
(13) $(0,4)$
(4) $(4,0)$
27. Which relation is a function?
(1) $\left\{(x, y) \mid x^{2}+y=4\right\}$
(3) $\left\{(x, y) \mid x^{2}-y^{2}=4\right\}$
(2) $\left\{(x, y) \mid x^{2}+y^{2}=4\right\}$
(4) $\left\{(x, y) \mid x^{2}+4 y^{2}=4\right\}$

28 If the replacement set is the set of real numbers, what is the domain of the relation represented by $\left\{(x, y) \mid x^{2}+4 y^{2}=16\right\} ?$
(1) $\{y \mid-2 \leq y \leq 2\}$
(3) $\{x \mid-4 \leq x \leq 4\}$
(2) $\{y \mid-2<y<2\}$
(4) $\{x \mid-4<x<4\}$
29. Which is the graph of a quadratic relation for which the domain consistspf all the real numbers?
(1)

(2)

(4)

30. If the graphs of the equations $x^{2}+y^{2}=9$ and $y=3$ are drawn on the same set of axes, what is the total number of points common to both graphs?
(1) 1
(2) 2
(3) 3
(4) 0

2i. When drawn on the same set of axes, tho points of intersection of the graphs of $x^{2}+y^{2}=16$ and $x=2$ are located in quadrants
(1) I and III
(3) II and III
(2) I and IV
(4) II and IV
32. The graphs of the equations $x^{2}+y^{2}=25$ and $y=x^{2}$ are drawn on the same set of axes. The total number of points common to these graphs is
(1) 1
(2) $)$
(3) 3
(4) 4
33. The graph of $x^{2}+y^{2}=25$ and the graph of $x-4=0$ are drawn on the same set of axes. A point of intersection of the graphs is
(1) $(5,0)$
(2) $(-4,-3)$
(3) $(4,-3)$
(4) $(-3,4)$
84. What is the graph of the solution set of $x^{2}+y^{2}>9$?
(1)

(3)

(2)

(4)

35. Each equation in column A has one of the geometric figures in column B as its graph. List the numbers $1-5$ on your answer paper and after each number write the letter that indicates the corresponding graph.

(a) $44 x^{2}+4 y^{2}=0$
(c) $)^{(5)-x^{2}-4 y^{2}=0}$
a. The point $(0,0)$
b-Two straight lines parallel to the y-axis
c. Two straight lines intersecting at the origin
f. A parabola that crosses the y-axis at $(0,-4)$
Q-A circle whose center is the origin and whose radius is 2
f. An ellipse that crosses the y-axis at $(0,1)$ and $(0,-1)$

- A hyperbola that crosses the y-nxis at $(0,2)$ and $(0,-2)$

$$
x^{2} 14 y^{2}=0
$$

