Name:	Date:
PC: Review of Factoring	Ms. Loughran

When factoring a polynomial go through this list in your mind:

- 1. GCF: Look for all factors that are common to all terms of the polynomial, pull out the greatest common factor.
- 2. Difference of two squares: If the polynomial is a binomial, look to see if it is the difference of two squares.
 - Remember you can NOT factor the sum of two squares.
- 3. Trinomials: $ax^2 + bx + c$ If the polynomial is a trinomial then look at the leading coefficient, a.

If the leading coefficient is one (a = 1), use the add multiply method. Look for numbers that multiply to c while adding to b.

If the leading coefficient is not equal to one $(a \ne 1)$ use factoring by trial and error or the AC method.

The AC Method

- a. Form the product ac
- b. Find a pair of numbers whose product is ac and whose sum is b
- c. Rewrite the polynomial so that the middle term (bx) is written as the sum of the two terms whose coefficients are the two numbers found in step b
 - d. Factor by grouping
- 4. Grouping: If the polynomial has 4 terms, try factoring by grouping.
- 5. Final check: Always make sure that the factors you end up with are completely factored. If you have overlooked a common factor, you can catch it here.

#s2, 5-7, 17

Exercises
$$00T^{5}$$
1) $2x^{2} - 18 = 2(x^{2} - 9) = 2(x+3)(x-3)$

21)
$$a^3 - a^2b - a + b$$

2)
$$3y^2 - 48$$

2)
$$3y^{2} - 48$$

$$22) x^{2} + 6x + 5$$
3) $a^{4} - 16 = (a^{2} - 4)(a^{2} + 4) = (a + 2)(a - 2)(a^{2} + 4)$
23) $x^{2} - 4x + 3$

23)
$$x^2 - 4x + 3$$

22) $x^2 + 6x + 5$

4)
$$5a^2 - 30a + 45 = 5(0^2 - 60 + 9) = 5(0 - 3)(0 - 3)$$
 24) $n^2 + 5n + 6$

24)
$$n^2 + 5n + 6$$

$$4a^2 + 16a + 16$$

25)
$$n^2 - 10n + 25$$

6)
$$-x^2 + 50x - 625$$

26)
$$m^2 + 3ms - 4s^2$$

$$7$$
) ax - bx + ay - by

27)
$$y^2 + 4y - 12$$

8)
$$2ax + 3 + x + 6a$$

28)
$$y^2 - y - 30$$

9)
$$x^3 - 3x^2 - 9x + 27$$

10)
$$3x^{2} + bx + c$$
 $ac = -b$
 $3x^{2} + 5x - 2$ $b = 5$
 $3x^{3} + bx - x - 2$
 $3x(x+3) - 1(x+3) = (3x-1)(x+2)$

30)
$$6 - x - x^2$$

12)
$$x^2 - 4x + 2xy - 8y$$

 $x(x-4) + 2y(x-4) = (x+2y)(x-4)$

31)
$$36 + 5x - x^2$$

12)
$$x - 4x + 2xy - 8y$$

 $x(x-4) + 2y(x-4) = (x+2y)x$
13) $x^2 - 16y^2$

32)
$$36s^2 + 12s + 1$$

33)
$$6s^2 + 30.s - 900$$

14)
$$x^2 - 9x + 18$$

34)
$$2a^4 - 10a^3 - 72a^2$$

15)
$$3a^2 - 2ax - 3a + 2x$$

35)
$$2x^3 - 3x^2 - 2x + 3$$

16)
$$a^2 - 2a + ab - 2b$$

36)
$$(x-1)^2-4$$

17)
$$6x^2 + 13x + 6$$

37)
$$(x+2)^2 - (y-3)^2$$

18)
$$x^4 - 11x^3 + 24x^2$$

38)
$$16 - (2x - 1)^2$$

19)
$$8x^2 - 6x - 2$$

39)
$$4a^2 - 4ab - 36 + b^2$$

20)
$$9x^2 - 12x + 4$$

40)
$$2a^3 - 16a^2 + 32a$$