Name: ______PC: Decomposition of Functions

Date:____ Ms. Loughran

1 C. Decomposition of 1 unctions

Do Now:

Given
$$f(x) = \sqrt{x}$$
 and $g(x) = \frac{1}{x}$, find

(a) f(g(4))

$$g(4) = \frac{1}{4}$$
 $f(4) = \frac{1}{4} = \frac{1}{4} = \frac{1}{2}$

(b)
$$f(g(x))$$

$$f(X) = X$$

$$X = \int X = \int X$$

Homework 10-06

7. For each of the following, find the functions $(f \circ g)(x)$ and $(g \circ f)(x)$.

(a)
$$f(x)=2x+3$$
, $g(x)=4x-1$
(f • g) X
 $f(4x-1) = 2(4x-1)+3$
 $= 8x-2+3$
 $= 8x+1$
(g • f)(x)
 $g(2x+3) = 4(2x+3)-1$
 $= 8x+12-1$
 $= 8x+11$

(c)
$$f(x) = x^3 + 2$$
, $g(x) = \sqrt[3]{x}$

$$(f \circ g)(x)$$

$$(x) = \sqrt[3]{x}$$

$$= x + 2$$

$$(g \circ f)(x)$$

 $f(x) = x + 2$
 $g(x^3 + 2) = \sqrt[3]{x^3 + 2}$

(b)
$$f(x) = 6x - 5$$
, $g(x) = \frac{x}{2}$

$$\begin{cases} f \circ g \\ X \end{cases} = \begin{cases} X \\ 2 \end{cases} - 5$$

$$= 3x - 5$$

$$(g \circ f) \times f(x) = 6 \times -5$$

 $g(6x-5) = \frac{6 \times -5}{2}$

(d)
$$f(x) = x^{2}, g(x) = \sqrt{x-3}$$

$$(f \circ g)(x)$$

$$g(x) = \sqrt{x-3}$$

$$f(\sqrt{x-3}) = (\sqrt{x-3})^{2}$$

$$= x-3$$

$$(g \circ f)(x)$$

$$g(x^{2}) = \sqrt{x^{2}-3}$$

8. Find
$$f(g(h(x)))$$

(c)
$$f(x) = x^4 + 1$$
, $g(x) = x - 5$, $h(x) = \sqrt{x}$

$$h(x) = \sqrt{x}$$

$$Q(\sqrt{x}) = \sqrt{x} - 5$$

$$F(\sqrt{x} - 5) = (\sqrt{x} - 5) + 1$$

(d)
$$f(x) = \sqrt{x}$$
, $g(x) = \frac{x}{x-1}$, $h(x) = \sqrt[3]{x}$

$$h(x) = \sqrt[3]{x}$$

$$g(\sqrt[3]{x}) = \sqrt[3]{x}$$

$$f(\sqrt[3]{x} - 1) = \sqrt[3]{x}$$

A composite function is a function that brings together two or more functions. For instance, let *h* be given by

$$h(x) = \sqrt{x^2 + 2x + 2}$$

If we let
$$f(x) = x^2 + 2x + 2$$
 and $g(x) = \sqrt{x}$, then $(g \circ f)(x) = 2$
 $f(x) = x + 2x + 2$

Thus the given function h has been *ecomposed* into the composition of the two functions f and g. Such decompositions are not unique. More than one decomposition is possible.

We could have decomposed h into $f(x) = \sqrt{x+2}$ and $g(x) = x^2 + 2x$.

$$f(g(x)) = (x^{2} + 2x)$$

$$f(x^{2} + 2x) = (x^{2} + 2x + 2)$$

We are going to avoid using the identity function (f(x) = x) in our decompositions.

1. Find the functions f and g so that h(x) = f(g(x))

(a)
$$h(x) = (3x+1)^2$$

$$f(x) = (x+1)$$

$$g(x) = 3x$$

$$g(x) = 3x$$

$$f(g(x))$$

$$f(3x) = (3x+1)^2$$

(b)
$$h(x) = \sqrt{1 - 4x}$$

$$f(x) = \sqrt{x}$$

$$g(x) = 1 - 4x$$

$$g(x) = \sqrt{1 - x}$$

$$g(x) = 4x$$

$$f(x) = \sqrt[4]{x+9}$$

$$f(x) = \sqrt[4]{x}$$

Practice

Express the function in the form $f \circ g = F(g(x))$

1.
$$F(x) = (x-9)^5$$

$$f(x) = x^5$$

$$g(x) = x^{-9}$$

2.
$$F(x) = \sqrt{x+1}$$

$$f(x) = x+1$$

$$g(x) = \sqrt{x}$$

3.
$$F(x) = \frac{x^2}{x^2 + 4}$$

$$f(x) = \frac{x}{x+4}$$

$$g(x) = x^2$$

4.
$$F(x) = \frac{1}{x+3}$$

$$f(x) = x$$

$$g(x) = x+3$$

5.
$$F(x) = |1 - x^3|$$

$$6. \quad F(x) = \sqrt{1 + \sqrt{x}}$$

$$f(x) = |x|$$

$$g(x) = |-x|^3$$

$$f(x) = \sqrt{x}$$

$$g(x) = 1 + \sqrt{x}$$

Express the function in the form $f \circ g \circ h = f(g(h(x)))$

7.
$$F(x) = \frac{1}{x^2 + 1}$$

$$G(X) = X + 1$$

$$G(X) = X + 1$$

$$G(X) = X + 1$$

$$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{2}{2} + \frac{1}{2}$$

$$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{2}{2} + \frac{1}{2}$$