Do Now #s 1,3 and 5

Name: _____

Date: _____

PC: Homework Writing Equations of Lines

Ms. Loughran

Write the equation of the line from graph and also write domain and range. Find x and y-intercepts. Determine whether or not each is a function.

 $y-y = m(x-x_1)$ $y-0 = -\frac{3}{5}(x-3)$ $y = -\frac{3}{5}x + \frac{9}{5}$

3. Function D: $(-\infty, \infty)$

X-mt:(0,0) $y=-\frac{1}{2}X$ y-int:(0,0) $y=-\frac{1}{2}X$ 4.

5.

Function

D: (-∞, ∞)

R: {3}

x-int: nory, u = 3

6.

Name:	D .
PC: Quadratic Functions	Date:
	Ms. Loughran

Standard form:
$$y = f(x) = ax^2 + bx + c$$
, $a \ne 0$

- If a > 0, then the parabola opens upward; if a < 0, then the parabola opens downward.
- The vertex of the parabola is the point $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$, and the axis of symmetry is $x = \frac{-b}{2a}$.
- To find the y-intercept, let x = 0 and solve for y.
- To find the x-intercept, let y = 0 and solve for x. (This will result in a quadratic equation which might have 0, 1 or 2 solutions.)

Vertex form: $y = f(x) = a(x - h)^2 + k, \ a \ne 0$

- If a > 0, then the parabola opens upward; if a < 0, then the parabola opens downward.
- The vertex of the parabola is the point (h,k) and x = h is the axis of symmetry.
- To find the y-intercept, let x = 0 and solve for y.
- To find the x-intercept, let y = 0 and solve for x. (This will result in a quadratic equation which might have 0, 1 or 2 solutions.)

Examples: $(x)^2 + bx + c$ 1. Given the quadratic function $f(x) = -x^2 + 6x - 5$, find the axis of symmetry, vertex, x- and y-intercepts and graph it.

2. Given the quadratic function $f(x) = (x-4)^2$, find the axis of symmetry, vertex, x- and y-intercepts and graph it.

