
Name:PC: Inverses	Date: Ms. Loughran			
The functions f and g are inverse functions if $f(g(x)) = g(f(x)) = x$.				
Example1:	R			
Let $f(x) = 2x + 1$ and $g(x) = \frac{x - 1}{2}$, are f and g inverse function $f(g(x))$ $f(\frac{x - 1}{2}) = 2(\frac{x - 1}{2}) + 1$ $\chi = \frac{x - 1}{2}$ $g(f(x))$ $g(x + 1) = \frac{x - 1}{2}$	$\frac{2x+1}{2}$ $\frac{2x}{2}$			
The symbol f^{-1} is often used for the inverse of function f . To reverses what the function has done. The inverse of a function and range. That is for every point (a,b) on the graph of f , the graph of the inverse of f . The graphs of a function and its inverse to the line $y = x$.	The inverse "undoes" or on interchanges the domain were is a point (b,a) on the			
Example 2:				
Let $g(x) = \{(1,2), (2,2), (3,2), (4,2), (5,2)\}$, find the inverse of function? Nourse of $g: \{(2,1), (2,2), (3,2), (3,2)\}$, find the inverse of function? The inverse is not a function example 3: Example 3: Die The inverse of f ? Is the inverse also a figure of f ? Is the inverse also a figure of f ?	ble thurlis (x's repeating) chan, we can refer to it as a function? $g^{-1}(x)$			
A function whose inverse is also a function is called one to one 1-1) It is easy to detect a one to one function from its graph test. A function is 1-1 if and only if no horizontal line interiore. Typical function name withy Switch x and y Method 1: solve for the help y $X = 2x - 3$ $X = 2$	using the horizontal line			
$\begin{array}{ll} x+3 = 2y & posses the VLI \\ x+3 = y & posses the VLI \\ x + 3 = y & posses the VLI \\ x + 3 = y & posses the VLI \\ x + 3 = x + 1$	$\frac{x+3}{2} = y = \int_{-\infty}^{\infty} (x)$			

Example 4:

Let $h(x) = x^2$, find the inverse of h? Is h(x) one to one?

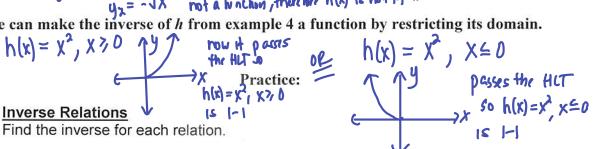
$$y = x^{2}$$

$$x = y$$

$$y_{1} = \sqrt{x}$$

$$y_{2} = \sqrt{x}$$

$$y_{3} = \sqrt{x}$$


$$y_{4} = \sqrt{x}$$

$$y_{5} = \sqrt{x}$$

$$y_{7} = \sqrt{x}$$

$$y_{8} = \sqrt{x}$$

We can make the in

this is a

$$\{(1, -3), (-2, 3), (5, 1), (6, 4)\}$$
 2. $\{(-5, 7), (-6, -8), (1, -2), (10, 3)\}$

Find an equation for the inverse for each of the following relations.

3.
$$y = 3x + 2$$

4.
$$y = -5x - 7$$

4.
$$y = -5x - 7$$
 5. $y = 12x - 3$

6.
$$y = -8x + 16$$

7.
$$y = \frac{2}{3}x - 5$$

$$y = -8x + 16$$
 7. $y = \frac{2}{3}x - 5$ 8. $y = -\frac{3}{4}x + 5$

9.
$$y = -\frac{5}{8}x + 10$$
 10. $y = \frac{1}{2}x + 8$ 11. $y = x^2 + 5$

10.
$$y = \frac{1}{2}x + 8$$

11.
$$y = x^2 + 5$$

12.
$$y = x^2 - 4$$

12.
$$y = x^2 - 4$$
 13. $y = (x + 3)^2$ 14. $y = (x - 6)^2$

14.
$$v = (x - 6)^2$$

15.
$$y = \sqrt{x-2}, y \ge 0$$
 16. $y = \sqrt{x+5}, y \ge 0$ 17. $y = \sqrt{x} + 8, y \ge 8$

6.
$$y = \sqrt{x+5}, y \ge 0$$

17.
$$v = \sqrt{x} + 8, v \ge 8$$

18.
$$y = \sqrt{x} - 7, y \ge -7$$

Verifying Inverses

Verify that f and g are inverse functions.

19.
$$f(x) = x + 6$$
, $g(x) = x - 6$

$$f(x) = x + 6$$
, $g(x) = x - 6$ 20. $f(x) = 5x + 2$, $g(x) = \frac{x - 2}{5}$

21.
$$f(x) = -3x - 9$$
, $g(x) = -\frac{1}{3}x - 3$ 22. $f(x) = 2x - 7$, $g(x) = \frac{x + 7}{2}$

$$f(x) = 2x - 7, g(x) = \frac{x + 7}{2}$$

23.
$$f(x) = -4x + 8$$
, $g(x) = -\frac{1}{4}x + 2$ 24. $f(x) = \frac{1}{2}x - 7$, $g(x) = 2x + 14$

3.
$$y = 3x + 2$$

Passes the vet of the solution of the soluti

$$x = 3y + 2$$

$$X-2=3y$$

$$\begin{array}{ll} x-2=3y & \text{or} \\ \frac{x-2}{3}=y & \text{passes the VLT} \\ \text{so } y=3x+2 \text{ is } +1 \end{array}$$

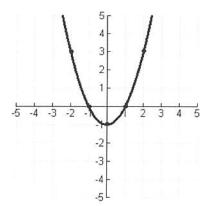
5.
$$y = 12x - 3$$

| Inverse is also a hardion | b/c it pesses | X43 | the Hett

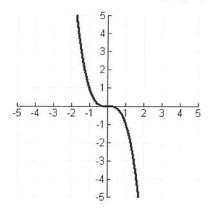
$$y = \frac{x+3}{12}$$

13.
$$y = (x + 3)^2$$
 Squaring -

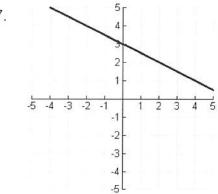
$$y = \pm \sqrt{x} - 3$$

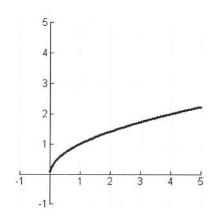

$$\chi = (y+3)^{2}$$

$$\pm \sqrt{x} = y + 3$$


$$\pm \int x - 3 = y$$

Graphing InversesGraph the inverse for each relation below (put your answer on the same graph).


25.


26.

27.

28.

Name:	Luj		
PC: Dec	ompositio	n Homework 2	

Date: _____ Ms. Loughran

Find functions f and g such that $h(x) = (f \circ g)(x)$.

1.
$$h(x) = (3x^2 - 2)^4$$

 $g(x) = 3x^2 - 2$
 $f(x) = x^4$

2.
$$h(x) = (x^2 - x + 1)^8$$

 $g(x) = x^2 - x_{11}$
 $f(x) = x^3$

3.
$$h(x) = \sqrt[3]{x-4}$$
$$g(x) = x-4$$
$$f(x) = \sqrt[3]{x}$$

4.
$$h(x) = \frac{1}{x+2}$$

$$g(x) = x+2$$

$$f(x) = \frac{1}{x}$$

5.
$$h(x) = \sqrt{x^2 + 6}$$

$$g(X) = x^2 + 6$$

$$f(X) = \sqrt{X}$$

7. $h(x) = \sqrt[4]{x+1}$

$$g(x) = 6x + 7$$

$$g(x) = 6x + 7$$

$$f(x) = 2^{x}$$

8. $h(x) = (5x-8)^6$

$$g(x) = x+1$$

$$f(x) = \mathcal{I}_X$$

$$g(x) = 5x - 8$$

$$f(x) = x^{6}$$

Express the function in the form $(f \circ g \circ h)(x)$

9.
$$F(x) = \sqrt[3]{(x+4)^2}$$

$$h(x) = x+4$$

$$g(x) = x^2$$

$$f(x) = \sqrt[3]{x}$$

10.
$$F(x) = (5x-8)^6$$

 $h(x) = 5x-7$ $h(x) = 5x$
 $g(x) = x-1$ $f(x) = x$