Name:
PC: Decomposition

Date:
Ms . Loughran

Do Now: (Odds only for today)
Find two functions f and g such that $(g \circ f)(x)=h(x)$

1. $h(x)=(2 x+1)^{2}$

$$
\begin{aligned}
& f(x)=2 x+1 \\
& g(x)=x^{2}
\end{aligned}\left\{\begin{array}{l}
f(x)=2 x \\
g(x)=(x+1)^{2}
\end{array}\right.
$$

3. $h(x)=\frac{1}{x+2}$

$$
\begin{aligned}
& f(x)=x+2 \\
& g(x)=\frac{1}{x}
\end{aligned}
$$

5. $h(x)=\frac{4}{(5 x+2)^{2}}$
6. $h(x)=\frac{-x^{2}+3}{4-x^{2}}$
7. $h(x)=\sqrt[3]{x^{2}-4}$
8. $h(x)=(1-x)^{3}$

$$
\begin{aligned}
& f(x)=5 x+2 \\
& g(x)=\frac{4}{x^{2}}
\end{aligned}\left\{\begin{array}{l}
f(x)=(5 x+2)^{2} \\
g(x)=\frac{4}{x}
\end{array}\right.
$$

7. $h(x)=\frac{27 x^{3}+6 x}{10-27 x^{3}}=\frac{(3 x)^{3}+2(3 x)}{10-(3 x)^{3}}$

$$
\begin{aligned}
& f(x)=3 x \\
& g(x)=\frac{x^{3}+2 x}{10-x^{3}}
\end{aligned}
$$

Continuing in yesterday's packet...

Graphing Inverses

Graph the inverse for each relation below (put your answer on the same graph).

Name:
PC: Inverse Functions

Date:
Ms. Loughran

pass HLT
 \uparrow

Which of the following relations are one-to-one functions? pass the VLT

$y=3 x-2$

$y=x^{2}+1$
$y=x^{3}$

$x=y^{2}-4$
$y=\sqrt{x+4}$
$(x-2)^{2}+(y-1)^{2}=9$

$y=2^{x}$

$y=|x+3|$

Name:
PC: Review of Linear Functions

Date:
Ms. Loughran

A linear function is a function defined by the equation $f(x)=m x+b$, where " m " is called the slope and " b " is called the y-intercept. This equation is called the slope intercept form of a line. The graph of a linear equation is a straight line.

Formula for slope:
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}$

Other ways to write the equation of a line:

$$
\text { point }\left(x_{1}, y_{1}\right)
$$

Point slope:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Standard form: $A x+B y=C, A, B, C$ can not be fractions

Parallel lines have same slopes. parallel \rightarrow II
Perpendicular lines have slopes that are negative -rebiprdcals_ perpendicular \rightarrow.
Horizontal lines are in the form $y=$ Constant. Slope of a horizontal line is \qquad .

Vertical lines are in the form $x=$ Constant. Slope of a vertical line is unde fined

Exercises

1. Find the slope of the line passing through each pair of points.
(a) $(-2,0)$ and $(3,1)$
(b) $(-1,2)$ and $(2,2)$
(c) $(0,4)$ and $(1,-1)$
$m=\frac{1-0}{3-(-2)}=\frac{1}{5}$
$m=\frac{2-2}{2-(-1)}=\frac{0}{3}=0$
$m=\frac{-1-4}{1-0}=\frac{-5}{1}=-5$
(x, y)
2. Find an equation of the line that passes through the point $(1,-2)$ and has a slope of 3 in:
(a) point slope form $y-y_{1}=m\left(x-x_{1}\right)$
(b) slope intercept form
(c) standard form $\quad A x+B y=C$
a) $y-y_{1}=m\left(x-x_{1}\right)$

$$
y+2=3(x-1)
$$

$$
\text { b) } \begin{aligned}
y+2 & =3(x-1) \\
y+2 & =3 x-3 \\
y & =3 x-5
\end{aligned}
$$

c) $-3 x+y=5$

$$
y-(-2)=3(x-1)
$$

3. Find an equation of the line, in standard form, that passes through the points $(-4,0)$ and $(2,3)$.

$$
m=\frac{3-0}{2-(-4)}=\frac{3}{6}=\frac{1}{2}
$$

Inverse Relations

Find the inverse for each relation.

1. $\{(1,-3),(-2,3),(5,1),(6,4)\}$
2. $\{(-5,7),(-6,-8),(1,-2),(10,3)\}$
$\{(7,-5),(-8,-6),(-2,1),(3,10)\}$

Finding Inverses

Find an equation for the inverse for each of the following relations.
3. $y=3 x+2$
$x=-8 y+16$
$y=\frac{x-16}{-8}$
6. $y=-8 x+16$

$$
y=-\frac{1}{8} x+2
$$

9. $y=-\frac{5}{8} x+10$
10. $y=-5 x-7$
11. $y=12 x-3$ $y=\frac{x+7}{-5}=-\frac{1}{5} x-\frac{7}{5}$
16
12. $y=\frac{2}{3} x-5$
13. $y=\frac{1}{2} x+8$
$y=2 x-16$
14. $\begin{aligned} y & =x^{2}-4 \\ y & = \pm \sqrt{x+4} \\ y & =\sqrt{x-2}, y \geq 0\end{aligned}$
15. $y=(x+3)^{2}$
16. $y=(x-6)^{2}$
17. $y=\sqrt{x+5}, y \geq 0$
18. $y=-\frac{3}{4} x+5 \quad y=-\frac{4}{3}(x-5)$
$y=-\frac{4}{3} x+\frac{20}{3}$
19. $\mathrm{y}=\mathrm{x}^{2}+5$
$y=x^{2}-5, x \geq 0$
20. $y=\sqrt{x}-7, y \geq-7$

$$
y=(x+7)^{2}, x \geqslant-7
$$

Verifying Inverses
Verify that f and g are inverse functions.
$\forall f(g(x))=g(f(x))=x$
19. $f(x)=x+6, g(x)=x-6$
20.
21. $f(x)=-3 x-9, g(x)=-\frac{1}{3} x-3$

23.

$$
f(x)=-4 x+8, g(x)=-\frac{1}{4} x+2
$$

24. $f(x)=\frac{1}{2} x-7, g(x)=2 x+14$
