Name:
PC: Decomposition

Date:
Ms. Loughran

Do Now:
Find two functions $f, \mathrm{~g}$, and h such that $(g \circ f \circ h)(x)=k(x)$

1. $k(x)=\sqrt{2 x-6}-1$
2. $k(x)=\frac{1}{3 x+3}$

$$
h(x)=2 x-6
$$

$$
f(x)=\sqrt{x}
$$

$$
\begin{aligned}
& h(x)=3 x \\
& f(x)=x+3
\end{aligned}
$$

$$
g(x)=x-1
$$

$$
g(x)=\frac{1}{x}
$$

$$
\left\{\begin{array}{l}
k(x)=\frac{1}{3(x+1)} \\
h(x)=x+1 \\
f(x)=3 x \\
g(x)=\frac{1}{x}
\end{array}\right.
$$

Continuing in yesterday's packet...
4. State an equation of a line that contains the point whose coordinates are $(2,-3)$ and is parallel to the line whose equation is $2 x+y-6=0$.

$$
\begin{gathered}
y=-2 x+6 \\
m=-2 \\
m_{11}=-2 \\
y+3=-2(x-2) \quad \text { point slope }
\end{gathered}
$$

5. State an equation of a line that contains the point whose coordinates are $(1,-2)$ and perpendicular to the line whose equation is $x+3 y=6$.

$$
\begin{aligned}
& \frac{3 y}{3}=\frac{-x}{3}+\frac{6}{3} \\
& y=-\frac{1}{3} x+2 \\
& m=-\frac{1}{3} \\
& m_{\perp}=\frac{3}{1} \text { or } 3
\end{aligned}
$$

$$
y+2=3(x-1)
$$

$$
(2009,19), \quad(2012,24)
$$

6. In 2009 Nike's net sales were 19 billion, and in 2012 net sales were 24 billion.
(a) Write a linear equation giving the net sales y in terms of the year x.
(b) Use the equation to estimate the net sales for 2015.
plugin $\uparrow x=2015$
a) $m=\frac{24-19}{2012-2009}=\frac{5}{3}$
$(2009,19)$

$$
\text { or }(2012,24)
$$

$$
y-19=\frac{5}{3}(x-2009) \quad y-24=\frac{5}{3}(x-2012)
$$

7. Graph $f(x)=\frac{3}{2} x-2$

$$
\begin{aligned}
& m=\frac{3}{2} \\
& b=-2 \quad \text { y intercept }
\end{aligned}
$$

8. Graph $6 x+9=-3 y$
you would use calculator,
but might be easier just to use the slope and y-intercept

$$
\begin{aligned}
& \frac{6 x}{-3}+9=-\frac{3 y}{-3} \\
& -2 x-3=y \quad \begin{array}{l}
m=-2 \\
b=-3
\end{array}
\end{aligned}
$$

9. Graph $y=3$

10. Graph $x=-2$

11. What is the slope of the line $y=3$?
12. What is the slope of the line $x=-2$?

Write the equation of the line from graph and also write domain and range. Find x and y intercepts. Determine whether or not each is a function.
13.

14.

To find x-int.

$$
\begin{gathered}
(\text { led } y=0) \\
0=2 x-3 \\
3=2 x \\
16 . \frac{3}{2}=x
\end{gathered}
$$

$D:(-\infty, \infty)$
dint: $\left(\frac{3}{2}, 0\right)$
$R:(-\infty, \infty)$
y-int: $(0,-3)$
15.

Function
$m=-\frac{2}{3}$
$b=2$
$y=-\frac{2}{3} x+2$
$D:(-\infty, \infty)$
R: $(-\infty, \infty)$
$x-n t:(3,0)$
$y-m+:(0,2)$
17.

18.

$y=5$
$D:(-\infty, \infty)$
$R:\{5\}$
x-int: none
y-int: $(0,5)$ Function

26.

27.

28.

Name:
PC: Function Practice

Date: \qquad
Ms. Loughran

1. If $f(x)=x^{2}+2 x+5$ and $g(x)=x-1$, then $f(g(x))$ is

$$
f(x-1)=(x-1)^{2}+2(x-1)+5=x^{2}-2 x+1+2 x-2+5=x^{2}+4
$$

2. For which value of x is $f(x)=-65$ given $f(x)=-3 x^{2}-2 x$?
ᄃ [1] 7
r
[2] -7
${ }^{\circ}$ [3] 5

$$
\begin{gathered}
{[3] 5} \\
-65=-3 x^{2}-2 x
\end{gathered}
$$

3. Which function is not one-to-one?
r
$[1]\{(0,1),(1,2),(2,3),(3,4)\}$
r
[2] $\{(0,0),(1,1),(2,2),(3,3)\}$
[3] $\{(0,1),(1,0),(2,3),(3,2)\}$
$[4]\{(0,1),(1,0),(2,0),(3,2)\}$
plug in

$$
\begin{aligned}
& -65 \neq-3(7)^{2}-2(7) \\
& -65 \neq-3(-7)^{2}-2(-7) \\
& -65 \neq-3(5)^{2}-2(5) \\
& -65=-3(-5)^{2}-2(-5)
\end{aligned}
$$

4. Which graph is not a function?
${ }^{\circ}$ [1]
(6) [2]
${ }^{\circ}$ [3]
${ }^{\circ}$ [4]

5. If the domain of $f(x)=2 x+1$ is $\{-2 \leq x \leq 3\}$, which integer is not in the range?

- [1] -4

-4	$f(x)$
-2	-3
-1	-1
0	1
1	3
2	5
3	7

ค [2] -2
C [3] 0
${ }^{\circ}$ [4] 7

$$
\begin{aligned}
& g(-3)=\sqrt{1-(-3)}=2 \\
& f(2)=2^{2}+4=8
\end{aligned}
$$

6. If $f(x)=x^{2}+4$ and $g(x)=\sqrt{1-x}$, what is the value of $f(g(-3))$?
[1] 13
[2] 8
[3] 2
[4] $2 i \sqrt{3}$
7. Which equation does not represent a function? r
[1] $y=2 x$
[2] $y=x^{2}+10$
[3] $y=10 / x$
$[4] x^{2}+y^{2}=95$
8. What is the inverse of the function $y=2 x-3$?
(*) [1] $y=\frac{x+3}{2}$
$\subset_{[2]} y=\frac{x}{2}+3$ \qquad [3] $y=-2 x+3 \quad C_{[4]}^{y=\frac{1}{2 x-3}}$
9. Given $g(x)=\frac{1}{x-4}$, find $g\left(\frac{2}{5}\right)$. r
[1] $-5 / 3$
[2] $-5 / 18$

$$
g\left(\frac{2}{5}\right)=\frac{1}{\frac{2}{5}-4}=\frac{1}{-\frac{18}{5}}=\frac{-5}{18}
$$

[4] $-3 / 5$
10. The function $f(x)=3 x-7$ is
\ulcorner [1] one-to-one, but not onto
[2] onto, but not one-to-one
0
[3] both one-to-one and onto
[4] neither one-to-one nor onto
11. The range of the function $f(x)=(x+6)^{2}$ is r
[1] All Reals
${ }^{5}[2][6, \infty)$
r $[3][-6, \infty)$
0
[4] $[0, \infty)$

