Write the standard form of the equation of each line given the slope and y-intercept. $\quad A x+B y=C$ 43) Slope $=-4, y$-intercept $=3$
44) Slope $=\frac{1}{2}, y$-intercept $=-1$

Do Now: \#s 45 and 47 (this is from Friday night's hw packet)

45) Slope $=-\frac{9}{2}, y$-intercept $=4$

46) Slope $=\frac{5}{4}, y$-intercept $=1$

$$
\begin{gathered}
y=\frac{5}{4} x+1 \text { Eslope-ntueupt } \\
4\left(-\frac{5}{4} x+y=1\right)(-5 x+4 y=4)
\end{gathered}
$$

Write the slope-intercept form of the equation of the line through the given point with the given slope.
49) through: $(-1,1)$, slope $=1$
51) through: $(1,-1)$, slope $=-\frac{3}{5}$
46) Slope $=\frac{1}{5}$, y-intercept $=-4$
48) Slope $=-5, y$-intercept $=3$

$$
f(x)=x^{3}-3 x+5
$$

Exam 3 Review sheet (Q_{1})
(1)
(a) $f(1)=1^{3}-3(1)+5=1-3+5=3$
(b) $f(-2)=(-2)^{3}-3(-2)+5=-8+6+5=3$
(c)

$$
\begin{aligned}
f(x-2)= & (x-2)^{3}-3(x-2)+5 \\
& (x-2)(x-2)(x-2)-3 x+6+5 \\
& \left(x^{2}-4 x+4\right)(x-2)-3 x+11 \\
& x^{3}-4 x^{2}+4 x-2 x^{2}+8 x-8-3 x+11 \\
& x^{3}-6 x^{2}+12 x-3 x+3 \\
& x^{3}-6 x^{2}+9 x+3
\end{aligned}
$$

(d)

$$
f(2 x)=\frac{(2 x)^{3}-3(2 x)+5}{8 x^{3}-6 x+5}
$$

(e)

$$
\begin{gathered}
f(x+h)=(x+h)^{3}-3(x+h)+5 \\
(x+h)(x+h)(x+h)-3 x-3 h+5 \\
\left(x^{2}+2 x h+h^{2}\right)(x+h)-3 x-3 h+5 \\
x^{3}+2 x^{2} h+x h^{2}+x^{2} h+2 x h^{2}+h^{3}-3 x-3 h+5 \\
x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-3 x-3 h+5
\end{gathered}
$$

(2) $h(x)=\sqrt{x^{2}-16} \quad f(x)=x-1 \quad g(x)=x^{2}$
(a) $(g \circ f)(x)=g(x-1)=(x-1)^{2}=x^{2}-2 x+1$
(b) $(g \circ h)(x)=g\left(\sqrt{x^{2}-16}\right)=\left(\sqrt{x^{2}-16}\right)^{2}=x^{2}-16$
(c) $(f \circ g \circ h)(x)$

$$
\begin{aligned}
& f\left(g\left(\sqrt{x^{2}-16}\right)\right. \\
& f\left(\left(\sqrt{x^{2}-16}\right)^{2}\right) \\
& f\left(x^{2}-16\right)=x^{2}-16-1=x^{2}-17
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) }(f \circ h \circ g)(x) \\
& f\left(h\left(x^{2}\right)\right. \\
& f\left(\sqrt{x^{4}-16}\right)=\sqrt{x^{4}-16}-1
\end{aligned}
$$

(3)
(a) $\frac{(x+h)^{2}-3(x+h)-4-\left(x^{2}-3 x-4\right)}{h}$
$\frac{x^{2}+2 x h+h^{2}-3 x-3 h-4-x^{2}+3 x+4}{h}$

$$
\begin{aligned}
& \frac{2 x h+h^{2}-3 h}{h} \\
& 2 x+h-3, \quad h \neq 0
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \frac{3(x+h)-2-(3 x-2)}{h} \\
& \frac{3 x+3 h-2-3 x+2}{h} \\
& \frac{3 h}{h}=3 \quad h \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } \frac{\frac{x+h}{x(x+h)}-\frac{1}{k} x^{x}(x+h)}{h \neq 0,-h} \\
& h \neq 0 \\
& \frac{x-(x+h)}{x h(x+h)}=\frac{x-x-h}{x h(x+h)}=\frac{-h}{x h(x+h)}=\frac{-1}{x(x+h)}
\end{aligned}
$$

(4) (a)

$$
\begin{aligned}
& f(x)=3 x-2 \\
& y=3 x-2 \\
& x=3 y-2
\end{aligned}
$$

$$
x+2=3 y
$$

$$
f^{-1}(x)=\frac{x+2}{3}=y
$$

Since the inverse is a function, $f(x)$ is $1-1$.
(b)

$$
\begin{aligned}
& y=x+20 \\
& x=y+20 \\
& x-20=y
\end{aligned}
$$

Since the inverse is a function, $y=x+20 \quad 15 \quad 1-1$.
(c)

$$
\begin{aligned}
& f(x)=\sqrt{3 x-6} \\
& y=\sqrt{3 x-6} \\
& x=\sqrt{3 y-6} \\
& x^{2}=3 y-6 \\
& x^{2}+6=3 y \\
& \frac{x^{2}+6}{3}=y=f^{-1}(x)
\end{aligned}
$$

Since the inverse is a function, $f(x)$ is $1-1$.
(5) $(2,-4),(-2,7)$
(a)

$$
m=\frac{7-(-4)}{-2-2}=\frac{11}{-4}
$$

(b)

$$
\begin{array}{r}
-3 x+4 y=12 \\
4 y=\frac{3 x+12}{4}+\frac{1}{4} \\
y=\frac{3}{4} x+3 \\
m=3 / 4
\end{array}
$$

(c)

$$
\begin{aligned}
& y+3=2(x-3) \\
& m=2 \\
& m_{0+} \perp 1 n e=-1 / 2
\end{aligned}
$$

(d)

$$
\begin{aligned}
& y=3(2 x-5) \\
& y=6 x-15 \\
& m=6
\end{aligned}
$$

(b) $m=3 \quad(2,-4)$
(a) point-slope: $y+4=3(x-2)$
slope-intercipt; $\left\{\begin{aligned} y+4 & =3 x-6 \\ y & =3 x-10\end{aligned}\right.$
(b)

$$
(3-4),(-2,7)
$$

$$
y=3 x-10
$$

Standard $\quad y-3 x=-10$
pant slope: $y+4=-1 / 4(x-2)$

$$
\begin{gathered}
y-7=\frac{-11}{4}(x+2) \\
y+4=\frac{-1}{4} x+\frac{11}{2} \\
y-\frac{11}{4} x+3 / 2
\end{gathered}
$$

$\begin{aligned} & \text { Slope } \\ & \text { intercept }\end{aligned} \quad y=-\frac{11}{4} x+3 / 2$

Standard form: $y+\frac{11}{4} x-\frac{3}{2}=0$
$4 y+11 x=6$

$$
4 y+11 x=6
$$

(7) $7 x-2$ $\frac{12}{\sqrt{x+12}}$
(a)

$$
\begin{aligned}
& f(h(x)) \\
& \text { where: } \\
& h(x)=7 x \\
& f(x)=x-2
\end{aligned}
$$

(b)

$$
g(f(h(x)))
$$

where:

$$
\begin{aligned}
& h(x)=x+12 \\
& f(x)=\sqrt{x} \\
& g(x)=\frac{12}{x}
\end{aligned}
$$

(c) $\left(x^{4}-6\right)^{9}$
$f(g(x))$
where

$$
\begin{aligned}
& g(x)=x^{4}-6 \\
& f(x)=x^{9}
\end{aligned}
$$

$f(g(h(x))$
where

$$
\begin{aligned}
& h(x)=x^{4} \\
& g(x)=x-6 \\
& f(x)=x^{9}
\end{aligned}
$$

(8) a graph. I pasted it on last page.

$$
\text { (9) } \begin{array}{rlr}
f(g(x))=g(f(x))=x & f(x)=\sqrt{x-5} \\
f\left(x^{2}+5\right)=g(\sqrt{x-5})=x & g(x)=x^{2}+5 \\
\sqrt{x^{2}+5-5}=\frac{(\sqrt{x-5})^{2}+5}{} & \text { * need bo show } \\
\sqrt{x^{2}} & x-5+5 & \text { EAcH step* } \\
x & x &
\end{array}
$$

(10) (a) $f(g(2))$
$f(3)=1$
(b) $g(f(0))$

$$
g(2)=3
$$

(c) $(g \circ f)(b)$

$$
g(0)=2
$$

$$
\begin{aligned}
&(d)(f \circ f)(6) \\
& f(6)=0 \\
& f(0)=2
\end{aligned}
$$

(II)
a)
b)

$$
\begin{aligned}
& b=4 \\
& m=-1
\end{aligned}
$$

$$
y=-x+4
$$

$$
0=(-\infty, \infty)
$$

$$
R:(-\infty, \infty)
$$

$$
x \text {-int: }(16,0)
$$

$$
y \text { int: }(0,4)
$$

$$
x \text {-int: }(4,0)
$$

$$
\psi(10 t y=0)
$$

$$
0=\frac{1}{4} x-4
$$

$$
\left.-4=\frac{1}{4} x\right)^{4}
$$

$$
16=x
$$

c)

$$
\begin{aligned}
& b=-3 \\
& m=-3 / 4
\end{aligned}
$$

$$
y=-\frac{3}{4} x-3
$$

$$
D=(-\infty, \infty)
$$

$$
R:(-\infty, \infty)
$$

$$
y \text { int: }(0,-3)
$$

$$
x \text {-int: }(-4,0)
$$

$$
\downarrow(\operatorname{lot} y=0)
$$

$$
0=-\frac{3}{4} x-3
$$

$$
4\left(3=-\frac{3}{4} x\right)
$$

$$
12=-3 x
$$

$x=-4$ or look at graph
8. Graph:
a. $\quad f(x)=\frac{-1}{2} x+2$

$$
m=-\frac{1}{2} \quad b=2
$$

b. $f^{-1}(x)$

$$
\begin{array}{cc}
\text { points on } f(x) & \text { point on } f^{-1}(x) \\
(0,2) & (2,0) \\
(-2,3) & (3,-2) \\
(-4,4) & (4,-4) \\
(4,0) & (0,4) \\
& \\
& \\
& \text { switin xandy }
\end{array}
$$

12. Express each of the following below as composites of two or more of the following:

$$
\begin{array}{lll}
a(x)=x-1 & g(x)=x^{4} & b(x)=x+2 \\
e(x)=4 x & k(x)=\sqrt[3]{x} & f(x)=x^{2}
\end{array}
$$

(a) $4 x-1$
$a(e(x))$
(b) $4 x-4$
$e(a(x))$
(c) $4 x^{2}$

$$
e(f(x))
$$

(d) $16 x^{2}$

$$
f(e x))
$$

(e) $\left(x^{4}-1\right)^{2}$

$$
f(a(g(x))))
$$

(f) $16 x-4$

$$
e(a(e(x)))
$$

(g) $x+1$

$$
\text { (m) } x^{\frac{4}{3}}=\sqrt[3]{x^{4}}
$$

$$
a(b(x)) \text { or } b(a(x))
$$

(h) $x-2$

$$
a(a(x))
$$

(i) $x^{2}+1$

$$
\begin{aligned}
& a(b(f(x))) \\
& \operatorname{or} b(a(f(x))
\end{aligned}
$$

(j) $\sqrt[3]{x^{4}+1}$

$$
\begin{aligned}
& k((\operatorname{cor}(\lg (x))))) \\
& \underset{\text { or }}{k(b l a l g(x)))})
\end{aligned}
$$

(k) $\frac{1}{\sqrt[3]{x+2}}$

$$
h(k(b x)))
$$

(I) $\sqrt[3]{x+1}$

$$
\begin{aligned}
& k(a(b(x)) \\
& K(b(a(x))
\end{aligned}
$$

