Homework 03-05

Classwork:

Sketch the graph of each hyperbola. Plot and label the center, vertices, foci and asymptotes.

State the length of the transverse axis.

HTA
center:
$$(4, -5)$$

 $a = 3 \implies b = 1$
 $b = 1$
 $c^2 = 9r1 = 10$ $c = \sqrt{10} \implies c = \sqrt{2}$
2. $4x^2 - 9y^2 = 36$

$$\frac{\chi^2}{9} - \frac{y^2}{9} = 1$$

HTA

C: (0,0)

a=3 =

$$b=7$$
 $C^2 = 9+4=13$
 $C = \sqrt{13}$
 $C = \sqrt{3}$
3. $9(y+2)^2 - 4(x-1)^2 = 36$

$$(\frac{y+2}{4})^{2} - (\frac{x-1}{9})^{2} = 1$$

vertices: (1,-5), (7,-5)

foci (4±510,-5)

asymptotes:
$$y+5=\pm \frac{1}{3}(x-4)$$

transverse axis length: 6

VTA (4n + cr: (1, -2)) a = 2 + 1 b = 3 $c^2 = 4 + 9 = 13$ $c = \sqrt{13} + 1$

Verties: (1,-4), (1,0)fou: $(1,-2\pm\sqrt{13})$ asymptotes: $y+2=\pm\frac{2}{3}(X-1)$ transverse axis length: 4

4.
$$9x^{2} + 36x - y^{2} + 10y + 2 = 0$$

 $9(x^{2} + 4x + 4) - (y^{2} - 10y + 25) = -2 + 3b - 25$
 $9(x + 2)^{2} - (y - 5)^{2} = 9$
 $(x + 2)^{2} - (y - 5)^{2} = 1$

HTA
center:
$$(-2,5)$$

 $a=12$ $c^2=1+9$
 $b=3$ $c=\sqrt{10}$ $=$

5) vertice:
$$(-3,5)$$
, $(-1,5)$
fou: $(-2 \pm \sqrt{10}, 5)$
 $c^2 = 1 + 9$ asymptotes: $y - 5 = \pm 3 (x + 2)$
 $c = \sqrt{10} = 5$ transverse axis length: $(-3,5)$

5.
$$4x^2-5y^2+40x-30y-45=0$$

 $4(x^2+10x+25)-5(y^2+by+9)=45+100-45$
 $4(x+5)^2-5(y+3)^2=100$
 $(x+5)^2-(y+3)^2=1$
 $(x+5)^2-(y+3)^2=1$
 $(x+5)^2-(y+3)^2=1$
 $(x+5)^2-(y+3)^2=1$

HTA
C: (-5,-3)

$$a=5 \stackrel{?}{=} C^2 = 45$$

 $b=\sqrt{20}$ $c=\sqrt{45}$ or $3\sqrt{5} \stackrel{?}{=} 2$

6.
$$x^2-4y^2-2x+16y=20$$
 Yurkes $x^2-2x+1-4|y|^2-4y+4=20+1-16$ Fou: ($(x-1)^2-4|y-2|^2=5$ C: (1, 2) $(x-1)^2-4|y-2|^2=5$ C: (1, 2) $(x-1)^2-4|y-2|^2=1$ HTA $(x-1)^2-4|y-2|^2=1$ te. in standard form, the equation of the hyperbola, having the given properties.

Write, in standard form, the equation of the hyperbola, having the given properties.

7. Center
$$(0, 0)$$
; foci $(\pm 6, 0)$; vertices $(\pm 4, 0)$

$$\frac{\text{HTA}}{C=b} \times \oplus$$

$$\alpha = 4$$

$$= a^2 + b^2$$

$$= 16 + b^2$$

$$c^2 = a^2 + b^2$$

 $3b = 1b + b^2$
 $20 = b^3$

8. Center (0, 0); foci $(0,\pm 4)$; vertices $(0,\pm 1)$

$$y^2 - \frac{x^2}{15} = 1$$

$$C^{2} = a^{2} + b^{2}$$
 $4^{2} = 1^{2} + b^{2}$
 $16 = 1 + b^{2}$
 $15 = b^{2}$

9. Center (3,-1); foci (-2,-1) and (8,-1); vertices (0,-1) and (6,-1)

$$c^{2} = a^{2} + b^{2}$$
 $5^{2} = 3^{2} + b^{2}$
 $1b = b^{2}$
 $4 = b$

a=1

C = 4

10. Asymptotes $y = \pm \frac{5}{12}x$; foci ($\pm 13,0$)

$$\frac{x^2}{144} - \frac{y^2}{25} = 1$$

11. Asymptotes $y = \pm \frac{8}{15}x$; foci $(0,\pm 17)$ VTA center: (0,0)

$$a=8$$
 $b=15$
 $y - \frac{x}{225} =$

(B)
$$-10y-y^2 = -4x^2 - 72x - 199$$

 $4x^2 + 72x - y^2 - 10y = -199$
 $4(x^2 + 18x + 81) - (y^2 + 10y + 25)$

$$4(x^{2}+18x+81) - (y^{2}+10y+25) = -199 + 324 - 25$$

$$4(x+9)^{2} - (y+5)^{2} = 100$$

$$\frac{(x+9)^2}{25} - \frac{(y+5)^2}{100} = 1$$

Center:
$$(-9, -5)$$

HTA
 $a = 5 \stackrel{?}{=}$
 $b = 10$
 $c^2 = 125$
 $c = \sqrt{125}$ or $5\sqrt{5}$

center:
$$(-9, -5)$$

vertices: $(-14, -5), (-4, -5)$
foi: $(-9 \pm \sqrt{125}, -5)$
or
 $(-9 \pm 5\sqrt{5}, -5)$
asymptotes: $y+5=\pm 2/x+9$)
opens left and right

(16)
$$-y^2 + 12y - 19 = 18x - x^2$$

 $x^2 - 18x - y^2 + 12y = 19$
 $x^2 - 18x + 81 - (y^2 - 12y + 36) = 19$
 $(x - 9)^2 - (y - 6)^2 = 19 + 81 - 36$
 $(x - 9)^2 - (y - 6)^2 = 64$
 $(x - 9)^2 - (y - 6)^2 = 64$
 $(x - 9)^2 - (y - 6)^2 = 1$
 64 Center: $(9, 6)$
Vurhius: $(1, 6)$, $(17, 6)$
foci: $(9 = 857, 6)$
 $a = 8 = 2$ HTA asymphetes: $y - 6 = \pm 1(x - 9)$

b=8Opens left and night $C^2 = 128$ $C = \sqrt{128}$ or $8\sqrt{2}$