Classwork:
Sketch the graph of each hyperbola. Plot and label the center, vertices, foci and asymptotes. State the length of the transverse axis.
1.

$$
\begin{aligned}
& (x-4)^{2}-9(y+5)^{2}=9 \\
& \frac{(x-4)^{2}}{9}-(y+5)^{2}=1
\end{aligned}
$$

HTS
vertices: $(1,-5),(7,-5)$
center: $(4,-5)$

$$
\begin{aligned}
& a=3 \vec{~} \\
& b=1 \\
& c^{2}=9 r 1=10 \quad c=\sqrt{10} \vec{E}
\end{aligned}
$$ force $(4 \pm \sqrt{10},-5)$ asymptotes: $y+5= \pm \frac{1}{3}(x-4)$ transverse axis length: 6

$$
\frac{x^{2}}{9}-\frac{y^{2}}{4}=1
$$

HTS
vertices: $(\pm 3,0)$

$$
\begin{aligned}
& c:(0,0) \\
& a=3 \vec{\epsilon} \\
& b=2 \\
& c^{2}=9+4=13 \quad c=\sqrt{13} \vec{E} \\
& \text { 3. } 9(y+2)^{2}-4(x-1)^{2}=36 \\
& \frac{(y+2)^{2}}{4}-\frac{(x-1)^{2}}{9}=1
\end{aligned}
$$

$$
\text { fo ci: } \quad(\pm \sqrt{13}, b)
$$

asymptotes: $y= \pm \frac{2}{3} x$

VIA
center: $(1,-2)$
vertices: $(1,-4),(1,0)$

$$
\begin{gathered}
a=2 \uparrow \downarrow \\
b=3 \\
c^{2}=4+9=13 \\
c=\sqrt{13} \uparrow \downarrow
\end{gathered}
$$

$$
\text { foci: }(1,-2 \pm \sqrt{13})
$$

asymptotes: $y+2= \pm \frac{2}{3}(x-1)$
transverse axis length: 4
4.

$$
\begin{aligned}
& 9 x^{2}+36 x-y^{2}+10 y+2=0 \\
& 9\left(x^{2}+4 x+4\right)-\left(y^{2}-10 y+25\right)=-2+3 b-25 \\
& 9(x+2)^{2}-(y-5)^{2}=9 \\
& (x+2)^{2}-\frac{(y-5)^{2}}{9}=1
\end{aligned}
$$

HTA
center: $(-2,5)$
vertices $(-3,5),(-1,5)$

$$
a=1 \vec{c} \quad c^{2}=1+9
$$

fou: $(-2 \pm \sqrt{10}, 5)$

$$
\begin{array}{lll}
b=3 & c=1+9 \\
c & c=\sqrt{10} \leftrightarrows
\end{array}
$$

$$
\text { asymptotes: } y-5= \pm 3(x+2)
$$

5. $4 x^{2}-5 y^{2}+40 x-30 y-45=0$

$$
\begin{aligned}
& 4\left(x^{2}+10 x+25\right)-5\left(y^{2}+b y+9\right)= \\
& \quad 4(x+5)^{2}-5(y+3)^{2}=100 \\
& \frac{(x+5)^{2}}{25}-\frac{(y+3)^{2}}{20}=1 \\
& \text { STA }=(-5,-3) \\
& a=5 \rightarrow \quad c^{2}=45 \\
& b=\sqrt{20} \quad c=\sqrt{45} \text { or } 3 \sqrt{5} \rightarrow
\end{aligned}
$$

transpose axis= length: ?
vertices: $(-10,-3),(0,-3)$
fou: $(-5 \pm \sqrt{45},-3)$
asymptotes: $y+3= \pm \frac{\sqrt{20}}{5}(x+5)$
transverse axis length: 10
6. $x^{2}-4 y^{2}-2 x+16 y=20$
vertices: $(1 \pm \sqrt{5}, 2)$
$x^{2}-2 x+1-4\left(y^{2}-4 y+4\right)=20+1-16$
fou: $\left(1 \pm \frac{5}{2}, 2\right)$
$(x-1)^{2}-4(y-2)^{2}=5$
$\frac{(x-1)^{2}}{5}-\frac{(y-2)^{2}}{\frac{5}{4}}=1$
$\underset{\text { HTA }}{C:}(1,2) \rightarrow C^{2}=5+\left(\frac{5}{4}\right)$

$\left(\frac{7}{2}, 2\right) \quad\left(-\frac{3}{2}, 2\right)$
Write, in standard form, the equation of the hyperbola, having the given properties.
7. Center $(0,0)$; foci $(\pm 6,0)$; vertices $(\pm 4,0)$

$$
\begin{aligned}
& \frac{H T A}{c=b} \\
& a=4
\end{aligned} \quad \frac{x^{2}}{16}-\frac{y^{2}}{20}=1
$$

$$
\begin{aligned}
& \text { asymptotes: } \\
& y-2= \pm \frac{\sqrt{5}}{\frac{2}{\sqrt{5}}}(x-1)
\end{aligned}
$$

$$
\begin{array}{ll}
& a=1 \\
\text { VTA } & c=4
\end{array}
$$

8. Center $(0,0)$; foci $(0, \pm 4)$; vertices $(0, \pm 1)$

$$
y^{2}-\frac{x^{2}}{15}=1
$$

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
4^{2}=1^{2}+b^{2} \\
16=1+b^{2} \\
15=b^{2}
\end{gathered}
$$

9. Center $(3,-1)$; foci $(-2,-1)$ and $(8,-1)$; vertices $(0,-1)$ and $(6,-1)$ HTA

$$
\begin{aligned}
& c=5 \\
& a=3 \\
& c^{2}=a^{2}+b^{2} \\
& 5^{2}=3^{2}+b^{2} \\
& 16=b^{2} \\
& 4=b
\end{aligned}
$$

10. Asymptotes $y= \pm \frac{\frac{5}{12}^{b} x ; \text { foci }(\pm 13,0)}{a} \quad$ HTA \quad center: $:(0,0)$

$$
\frac{x^{2}}{144}-\frac{y^{2}}{25}=1
$$

11. Asymptotes $y= \pm \frac{8}{15} x$; foci $(0, \pm 17)$ VTA center: $(0,0)$

$$
c=17
$$

$$
\begin{aligned}
& a=8 \\
& b=15
\end{aligned} \quad \frac{y^{2}}{64}-\frac{x^{2}}{225}=1
$$

$$
\begin{aligned}
& \text { (15) }-10 y-y^{2}=-4 x^{2}-72 x-199 \\
& \begin{aligned}
& 4 x^{2}+72 x-y^{2}-10 y=-199 \\
& 4\left(x^{2}+18 x+81\right)-\left(y^{2}+10 y+25\right)=-199+32 y-25 \\
& 4(x+9)^{2}-(y+5)^{2}=100 \\
& \frac{(x+9)^{2}}{25}-\frac{(y+5)^{2}}{100}=1
\end{aligned}
\end{aligned}
$$

center: $(-9,-5)$

$$
\begin{aligned}
& \text { HTA } \\
& a=5 \rightleftarrows \\
& b=10 \\
& c^{2}=125 \\
& c=\sqrt{125} \text { or } 5 \sqrt{5}
\end{aligned}
$$

center: $(-9,-5)$
verices: $(-14,-5),(-4,-5)$ foi: $\begin{gathered}(-9 \pm \sqrt{125},-5) \\ \text { or }\end{gathered}$

$$
(-9 \pm 5 \sqrt{5},-5)
$$

asymphtes: $y+5= \pm 2(x+9)$ opens left andright

$$
\begin{aligned}
& \text { (16) } y^{2}+12 y-19=18 x-x^{2} \\
& x^{2}-18 x-y^{2}+12 y=19 \\
& x^{2}-18 x+81-\left(y^{2}-12 y+36\right)=19 \\
& (x-9)^{2}-(y-6)^{2}=19+81-36 \\
& (x-9)^{2}-(y-6)^{2}=64 \\
& \left(\frac{x-9)^{2}}{64}-\frac{(y-6)^{2}}{64}=1\right.
\end{aligned}
$$

center: $(9,6)$
vertices: $(1,6),(17,6)$ fou: $(958 \sqrt{2}, 6)$

$$
\begin{aligned}
& a=8 \Rightarrow \text { HA } \\
& b=8
\end{aligned}
$$

asymptotes: $y-6= \pm 1(x-9)$

$$
\begin{aligned}
& c^{2}=128 \\
& c=\sqrt{128} \text { or } 8 \sqrt{2} \vec{z}
\end{aligned}
$$

opens left and night

