Name:
PCH: Review of Inverses

Date:
Ms. Loughran

The functions f and g are inverse functions if $f(g(x))=g(f(x))=x$.

Example1:

Let $f(x)=2 x+1$ and $g(x)=\frac{x-1}{2}$, are f and g inverse functions?

The symbol f^{-1} is often used for the inverse of function f. The inverse "undoes" or reverses what the function has done. The inverse of a function interchanges the domain and range. That is for every point (a, b) on the graph of f , there is a point (b, a) on the graph of the inverse of f. The graphs of a function and its inverse are symmetric with respect to the line $y=x$.

A function whose inverse is also a function is called one to one. (can also be written as 1-1) It is easy to detect a one to one function from its graph using the horizontal line test. A function is $1-1$ if and only if no horizontal line intersects the graph more than once.

Practice

Use compositions to prove if the given functions are inverses.

1) $g(x)=4-\frac{3}{2} x$
2) $g(n)=\frac{-12-2 n}{3}$
$f(x)=\frac{1}{2} x+\frac{3}{2}$

$$
f(n)=\frac{-5+6 n}{5}
$$

$$
\text { 3) } \begin{aligned}
f(n) & =\frac{-16+n}{4} \\
g(n) & =4 n+16
\end{aligned}
$$

4) $f(x)=-\frac{4}{7} x-\frac{16}{7}$

$$
g(x)=\frac{3}{2} x-\frac{3}{2}
$$

$$
\text { 5) } \begin{aligned}
f(n) & =-(n+1)^{3} \\
g(n) & =3+n^{3}
\end{aligned}
$$

6) $f(n)=2(n-2)^{3}$
$g(n)=\frac{4+\sqrt[3]{4 n}}{2}$

$$
\text { 7) } \begin{aligned}
f(x) & =\frac{4}{-x-2}+2 \\
h(x) & =-\frac{1}{x+3}
\end{aligned}
$$

8) $g(x)=-\frac{2}{x}-1$

$$
f(x)=-\frac{2}{x+1}
$$

Find the inverse of each function.
9) $h(x)=\sqrt[3]{x}-3$
10) $g(x)=\frac{1}{x}-2$
11) $h(x)=2 x^{3}+3$
12) $g(x)=-4 x+1$
13) $g(x)=\frac{7 x+18}{2}$
14) $f(x)=x+3$
15) $f(x)=-x+3$
16) $f(x)=4 x$
17)

$$
h(x)=\frac{3}{-x-2}
$$

$$
f(x)=-\frac{3}{-x-3}-2
$$

19) If $g(x)=3 x-7$, find $g^{-1}(-1)$.
20) If $f(x)=\frac{2 x-1}{x+2}$, find $f^{-1}(-3)$.
21) If $g(x)=1+\sqrt[3]{2 x+1}$, find $g^{-1}(4)$.
