Name:_____ PCH: Review of Inverses Date: _____ Ms. Loughran

The functions f and g are inverse functions if f(g(x)) = g(f(x)) = x.

Example1:

Let f(x) = 2x+1 and $g(x) = \frac{x-1}{2}$, are f and g inverse functions?

The symbol f^{-1} is often used for the inverse of function f. The inverse "undoes" or reverses what the function has done. The inverse of a function interchanges the domain and range. That is for every point (a,b) on the graph of f, there is a point (b,a) on the graph of the inverse of f. The graphs of a function and its inverse are symmetric with respect to the line y = x.

A function whose inverse is also a function is called one to one. (can also be written as 1-1) It is easy to detect a one to one function from its graph using the **horizontal line test.** A function is 1-1 if and only if no horizontal line intersects the graph more than once.

Practice

Use compositions to prove if the given functions are inverses.

1) $g(x) = 4 - \frac{3}{2}x$ $f(x) = \frac{1}{2}x + \frac{3}{2}$ 2) $g(n) = \frac{-12 - 2n}{3}$ $f(n) = \frac{-5 + 6n}{5}$

3)
$$f(n) = \frac{-16+n}{4}$$

 $g(n) = 4n+16$
4) $f(x) = -\frac{4}{7}x - \frac{16}{7}$
 $g(x) = \frac{3}{2}x - \frac{3}{2}$

5)
$$f(n) = -(n+1)^3$$

 $g(n) = 3 + n^3$
6) $f(n) = 2(n-2)^3$
 $g(n) = \frac{4 + \sqrt[3]{4n}}{2}$

7)
$$f(x) = \frac{4}{-x-2} + 2$$

 $h(x) = -\frac{1}{x+3}$
8) $g(x) = -\frac{2}{x} - 1$
 $f(x) = -\frac{2}{x+1}$

Find the inverse of each function.

9)
$$h(x) = \sqrt[3]{x} - 3$$

10) $g(x) = \frac{1}{x} - 2$

11)
$$h(x) = 2x^3 + 3$$

12) $g(x) = -4x + 1$

13)
$$g(x) = \frac{7x + 18}{2}$$
 14) $f(x) = x + 3$

15)
$$f(x) = -x + 3$$
 16) $f(x) = 4x$

17)
$$h(x) = \frac{3}{-x-2}$$
 (18)
$$f(x) = -\frac{3}{-x-3} - 2$$

19) If g(x) = 3x - 7, find $g^{-1}(-1)$.

20) If
$$f(x) = \frac{2x-1}{x+2}$$
, find $f^{-1}(-3)$.

21) If
$$g(x) = 1 + \sqrt[3]{2x+1}$$
, find $g^{-1}(4)$.