Name:
PCH: Using Matrices to Solve Systems of Linear Equations

Date: \qquad
Ms. Loughran

We can use matrices as a streamlined technique for solving systems of linear equations.

Model:

$$
x-2 y+3 z=9
$$

1. Given: $-x+3 y=-4$

$$
2 x-5 y+5 z=17
$$

Coefficient Matrix 3×3

*constant terms are not included

Augmented Matrix 3×4

$$
\left[\begin{array}{ccc|c}
1 & -2 & 3 & 9 \\
-1 & 3 & 0 & -4 \\
2 & -5 & 5 & 17
\end{array}\right]
$$

*constant terms are included

To solve a linear system of equations we will use an augmented matrix.
To solve a matrix we use the elementary row operations that we discussed. Remember the 3 elementary row operations are the same three operations that we used to solve the linear systems of equations by elimination.

- interchange rows
- multiply a now by a non undo constant
- add a mulipple of one now to another now

Let's get back to solving the system.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & -2 & 3 & 9 \\
-1 & 3 & 0 & -4 \\
2 & -5 & 5 & 17
\end{array}\right] R_{1}+R_{2}\left[\begin{array}{ccc|c}
1 & -2 & 3 & 9 \\
0 & 1 & 3 & 5 \\
2 & -5 & 5 & 17
\end{array}\right]} \\
& \frac{1}{2} R_{3}\left[\begin{array}{lll|l}
1 & -2 & 3 & 9 \\
0 & 1 & 3 & 5 \\
0 & 0 & 1 & 2
\end{array}\right] \quad \begin{array}{cc}
z=2 & x-2(-1)+3(2)=9 \\
y+3(2)=5 & x+z=9 \\
y+b=5 & x=1 \\
y=-1 & (1,-1,2)
\end{array}
\end{aligned}
$$

This last matrix is said to be in row-echelon form. The term echelon refers to the stair step pattern formed by the nonzero elements of the matrix. To be in row echelon form, a matrix must have these properties:

1. All rows consisting entirely of zeros occur at the bottom of the matrix.
2. For each row that does not consist entirely of zeros, the first nonzero entry is 1 (called a leading $\mathbf{1}$).
3. For two successive (nonzero) rows, the leading 1 in the higher row is father to the left than the leading 1 in the lower row.

A matrix in row-echelon form is in reduced row-echelon form if every column that has a leading $\mathbf{1}$ has zeros in every position above and below its leading one.
2. Solve the following system using matrices:

$$
\begin{gathered}
-R_{1}\left[\begin{array}{llll}
-1 & -1 & 5 & -3
\end{array} \begin{array}{l}
\begin{array}{l}
x+y-5 z=3 \\
x \\
2 x-2 z=1
\end{array} \\
2 x-y-z=0
\end{array}\right. \\
{\left[\begin{array}{ccc|c}
1 & 1 & -5 & 3 \\
1 & 0 & -2 & 1 \\
2 & -1 & -1 & 0
\end{array}\right]-R_{1}+R_{2}\left[\begin{array}{ccc|c}
1 & 1 & -5 & 3 \\
0 & -1 & 3 & -2 \\
2 & -1 & -1 & 0
\end{array}\right]} \\
-R_{2}\left[\begin{array}{ccc|c}
1 & 1 & -5 & 3 \\
0 & 1 & -3 & 2 \\
2 & -1 & -1 & 0
\end{array}\right]-2 R_{1}+R_{3}\left[\left.\begin{array}{ccc}
1 & 1 & -5 \\
0 & 1 & -3 \\
0 & -3 & 9
\end{array} \right\rvert\,\right.
\end{gathered}
$$

$$
-3 R_{2}\left[\begin{array}{llll}
0 & 3 & -9 & 6
\end{array}\right]
$$

$$
\begin{gathered}
x-2 z=1 \\
x=2 z+1 \quad 2 z+1+y-5 z=3 \\
y-3 z=2 \\
y=3 z+2
\end{gathered}
$$

3. Solve the following system using matrices:

$$
\begin{aligned}
& \begin{array}{l}
x-2 y+z=7 \\
3 x+y-z=2
\end{array} \quad-3 R_{1}\left[\begin{array}{llll}
-3 & 6 & -3 & -21
\end{array}\right] \\
& 2 x+3 y+2 z=7 \\
& {\left[\begin{array}{ccc|c}
1 & -2 & 1 & 7 \\
3 & 1 & -1 & 2 \\
2 & 3 & 2 & 7
\end{array}\right]-3 R_{1}+R_{2}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 7 \\
0 & 7 & -4 & -19 \\
2 & 3 & 2 & 7
\end{array}\right]} \\
& -2 l_{1}\left[\begin{array}{llll}
-2 & 4 & -2 & -14
\end{array}\right] \\
& R_{3}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 7 \\
0 & 7 & -4 & -19 \\
0 & 7 & 0 & -7
\end{array}\right] \stackrel{1}{7} R_{3}{ }^{\approx} R_{2}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 7 \\
0 & 1 & 0 & -1 \\
0 & 7 & -4 & -19
\end{array}\right] \\
& \begin{array}{c}
-7 R_{2}(0 \\
-7 R_{2}+R_{3} \\
\text { Steps: }
\end{array}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 7 \\
0 & 1 & 0 & -1 \\
0 & 0 & -4 & -12
\end{array}\right]-\frac{1}{4} R_{3}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 7 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right] \\
& \text { Steps: } \\
& \text { 1. convert system of equations into an } \\
& \text { augmented matrix } \\
& \text { 2. put the matrix in row echelon form } \\
& \text { 3. end the value of } z \text { from the last } \\
& \text { row, back substitute to find } y \text { and } \\
& \text { then } X \text {. } \\
& z=3 \\
& y=-1 \\
& x-2(-1)+3=7 \\
& x=2
\end{aligned}
$$

