Name:
PCH: Operations on Matrices

Date:
Ms. Loughran

Two matrices are equal if they have the same order $m \times n$ and their corresponding entries are equal.

1. Solve for $\left(a_{11}\right),\left(a_{12}\right.$, entry in ow 2 column a
entry in now, column 1

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-3 & 0
\end{array}\right]
$$

Matrix Addition

$$
\begin{aligned}
& a_{11}=2 \\
& a_{12}=-1 \\
& a_{21}=-3 \\
& a_{22}=0
\end{aligned}
$$

You can add two matrices (of the same order) by adding their corresponding entries. The sum of two matrices of different orders is undefined.
2. $\begin{array}{cc}2 \times 2 & 2 \times 2 \\ {\left[\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right]+\left[\begin{array}{rr}1 & 3 \\ -1 & 2\end{array}\right]}\end{array}=\left[\begin{array}{cc}0 & 5 \\ -1 & 3\end{array}\right]$
3. $\left[\begin{array}{ccc}0 & 1 & -2 \\ 1 & 2 & 3\end{array}\right]+\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ 1 & 2 & 3\end{array}\right]$
4. $\left[\begin{array}{c}1 \\ -3 \\ -2\end{array}\right]+\left[\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
5. The sum of $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 4 & 0 & -1 \\ 3 & -2 & 2\end{array}\right]$ and $B\left[\begin{array}{cc}0 & 1 \\ -1 & 3 \\ 2 & 4\end{array}\right]$ is undefined

Scalar Multiplication
In work with matrices, numbers are usually referred to as scalars. For our purposes, scalars will always be real numbers. You can multiply a matrix A by a scalar c by multiplying each entry in A by c.

The symbol $-A$ represents the scalar product $(-1) A$. Moreover, if A and B are of the same order, $A-B$ represents the sum of A and $(-1) B$. That is,

$$
A-B=A+(-1) B \quad \text { (Subtraction of matrices) }
$$

6. For the following matrices, find (a) $3 A$
(b) $-B$
(c) $3 A-B$

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2 & 2 & 4 \\
-3 & 0 & -1 \\
2 & 1 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & -4 & 3 \\
-1 & 3 & 2
\end{array}\right] \\
\text { a) } 3 A=\left[\begin{array}{ccc}
6 & 6 & 12 \\
-9 & 0 & -3 \\
6 & 3 & 6
\end{array}\right] \quad \text { b) }-B=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & 4 & -3 \\
1 & -3 & -2
\end{array}\right] \\
\text { c) } 3 A-B=\left[\begin{array}{ccc}
4 & 6 & 12 \\
-10 & 4 & -6 \\
7 & 0 & 4
\end{array}\right]
\end{gathered}
$$

Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be $m \times n$ and let c and d be scalars.

1. $A+B=B+A$
2. $A+(B+C)=(A+B)+C$
3. $(c d) A=c(d A)$
4. $I A=A$
5. $c(A+B)=c A+c B$
6. $(c+d) A=c A+d A$
7. $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]+\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]+\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right]+\left[\begin{array}{c}2 \\ -3 \\ -2\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$
8. Solve for X in the equation $3 X+A=B$, where
commutative prop of (matrix addition) associative poo of
matrix addison ,
(assouative prop. of.) matrix multiplication
(scalar identity distributive prop: ,
(diswributiva prop. $-A\left[\begin{array}{rr}-1 & 2 \\ 0 & -3\end{array}\right]$

$$
A=\left[\begin{array}{cc}
1 & -2 \\
0 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-3 & 4 \\
2 & 1
\end{array}\right]
$$

$$
X=\frac{1}{3}(B-A)
$$

$$
B-A=[\begin{array}{cc}
-4 & 6 \\
2 & -2
\end{array} \underbrace{}_{<\frac{1}{3}(B-A)} \quad X=\left[\begin{array}{rr}
-\frac{4}{3} & 2 \\
\frac{2}{3} & -\frac{2}{3}
\end{array}\right]
$$

Matrix Multiplication
To find the entries of the product, multiply each row of A by each column of B. Note that the number of columns of A must be equal to the of rows of B.

9. Find the product $A B$ where

$$
A=\left[\begin{array}{cc}
-1 & 3 \\
4 & -2 \\
5 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-3 & 2 \\
-4 & 1
\end{array}\right]
$$

$2 \times 3 \quad 3 \times 3 \quad 2 \times 3$
10. $\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & -1 & -2\end{array}\right]\left[\begin{array}{ccc}-2 & 4 & 2 \\ 1 & 0 & 0 \\ -1 & 1 & -1\end{array}\right]=\left[\begin{array}{lll}1(-2)+0(1)+3(-1) & 1(4)+0(1)+3(1) & 1(2)+0(0)+3(-1) \\ 2(-2)+(-1)(1)+(-2)(-1) & 2(4)+(-1)(0)+(-2)(1) & 2(2)+(-1)(0)+(-41)\end{array}\right.$

$$
\left[\begin{array}{ccc}
-5 & 7 & -1 \\
-3 & 6 & 6
\end{array}\right]
$$

11. $\left[\begin{array}{cc}3 & 4 \\ -2 & 5\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0\end{array}\right]=\left[\begin{array}{cc}3+0 & 0+4 \\ -2+0 & 0+5\end{array}\right]=\left[\begin{array}{cc}3 & 4 \\ -2 & 5\end{array}\right]$
12. $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]=\left[\begin{array}{ll}-1+2 & 2-2 \\ -1+1 & 2-1\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

13. $\left[\begin{array}{lll}1 \times 3 & -2 & -3\end{array}\right]\left[\begin{array}{c}3 \times 1 \\ -1 \\ 1\end{array}\right]=$

$$
\left[\begin{array}{c}
|x| \\
{[2+2-3]}
\end{array}=[1]\right.
$$

$3 x \mid$

$$
\begin{gathered}
3 \times 3 \\
{\left[\begin{array}{ccc}
2 & -4 & -6 \\
-1 & 2 & 3 \\
1 & -2 & -3
\end{array}\right]}
\end{gathered}
$$

14. $\left.\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right] \begin{array}{cc}1 \times 3 \\ 1 & -2\end{array}-3\right]=$

$$
3 \times 2 \quad 3 \times 4
$$

15. Find the product of $A B$. If $A=\left[\begin{array}{cc}-2 & 1 \\ 1 & -3 \\ 1 & 4\end{array}\right]$ and $B=\left[\begin{array}{cccc}-2 & 3 & 1 & 4 \\ 0 & 1 & -1 & 2 \\ 2 & -1 & 0 & 1\end{array}\right]$. undefined

Practice

Perform the indicated operation when possible.

1) $-4\left[\begin{array}{ll}5 & 1 \\ 6 & 0\end{array}\right]$
2) $\left[\begin{array}{llll}6 & -5 & 3 & -5\end{array}\right]+\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right]$
3) $-4 w\left[\begin{array}{ccc}-w & -4+u & 0 \\ v & 5 v & 3 w v\end{array}\right]$
4) $\left[\begin{array}{ccc}-4 & -5 & 5 \\ 1 & 6 & 3 \\ -2 & 2 & 1\end{array}\right]-\left[\begin{array}{ccc}-6 & -1 & -6 \\ 6 & -3 & -2 \\ 4 & -1 & -3\end{array}\right]$
5) $\left[\begin{array}{c}-5 w u \\ 6 \\ v-1\end{array}\right]-\left(\left[\begin{array}{c}-5 v \\ 6 v \\ 5 u+6\end{array}\right]-\left[\begin{array}{c}-3 v \\ -5 \\ 3 v u\end{array}\right]\right)$
6) $\left[\begin{array}{cc}-3 y & 3 x \\ -2 & -4 x+2 \\ y^{2} & 2 x\end{array}\right]-\left[\begin{array}{cc}x & x-2 \\ 4 & y \\ x-1 & x y\end{array}\right]$
7) $\left[\begin{array}{c}-4 b \\ 2 b \\ 6 b\end{array}\right]+2\left[\begin{array}{c}3 a \\ a b \\ a+4\end{array}\right]$
8) $-5\left(\left[\begin{array}{cc}1 & 0 \\ -2 & -3 \\ 6 & -6\end{array}\right]+\left[\begin{array}{cc}-5 & 4 \\ -6 & 0 \\ 4 & 4\end{array}\right]\right)$
9) $\left[\begin{array}{cc}3 & -3 \\ 6 & 3\end{array}\right] \cdot\left[\begin{array}{ccc}2 & 6 & 1 \\ 6 & -5 & 4\end{array}\right]$
10) $\left[\begin{array}{cc}3 & 1 \\ -3 & -4\end{array}\right] \cdot\left[\begin{array}{cc}1 & -3 \\ -4 & -1\end{array}\right]$
11) $\left[\begin{array}{cc}3 & 2 \\ 2 & 1 \\ 3 & 4 \\ -1 & -1\end{array}\right] \cdot\left[\begin{array}{cc}0 & 0 \\ 2 & -6\end{array}\right] \cdot\left[\begin{array}{cc}-2 & 6 \\ 0 & 0\end{array}\right]$
12) $\left[\begin{array}{cc}4 & -2 \\ -3 & 6\end{array}\right] \cdot\left(\left[\begin{array}{cccc}4 & -5 & 4 & 0 \\ 6 & 3 & 0 & -3\end{array}\right] \cdot\left[\begin{array}{cc}2 & 0 \\ -6 & -1\end{array}\right]\right.$
(1) $\left[\begin{array}{rr}-20 & -4 \\ -24 & 0\end{array}\right]$

Practice
(2) $\left[\begin{array}{llll}7 & -5 & 4 & -5\end{array}\right]$
(3) $\left[\begin{array}{ccc}4 w^{2} & 16 w-4 u w & 0 \\ -4 v w & -20 v w & -12 v w^{2}\end{array}\right]$
(4) $\left[\begin{array}{rrr}2 & -4 & 11 \\ -5 & 9 & 5 \\ -6 & 3 & 4\end{array}\right]$
(5) $\left[\begin{array}{c}-5 w u \\ 6 \\ v-1\end{array}\right]-\left[\begin{array}{l}-2 v \\ 6 v+5 \\ 5 u+6-3 v u\end{array}\right]=\left[\begin{array}{c}-5 w u+2 v \\ 1-6 v \\ v-7-5 u+3 v u\end{array}\right]$
(6) $\left[\begin{array}{cc}-3 y-x & 2 x+2 \\ -6 & -4 x+2-y \\ y^{2}-x+1 & 2 x-x y\end{array}\right]$ (7) $\left[\begin{array}{c}-4 b \\ 2 b \\ 6 b\end{array}\right]+\left[\begin{array}{c}6 a \\ 2 a b \\ 2 a+8\end{array}\right]=\left[\begin{array}{c}-4 b+6 a \\ 2 b+2 a b \\ 6 b+2 a+8\end{array}\right]$
(8) $-5\left[\begin{array}{cc}-4 & 4 \\ -8 & -3 \\ 10 & -2\end{array}\right]=\left[\begin{array}{cc}20 & -20 \\ 40 & 15 \\ -50 & 10\end{array}\right]$
(9) $\left[\begin{array}{rrr}-12 & 33 & -9 \\ 30 & 21 & 18\end{array}\right]$
(10) $\left[\begin{array}{cc}-1 & -10 \\ 13 & 13\end{array}\right]$
(11) $\left[\begin{array}{cc}4 \times 2 \\ 3 & 2 \\ 2 & 1 \\ 3 & 4 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}2 \times 2 \\ 0 & 0 \\ -4 & 12\end{array}\right]=\left[\begin{array}{cc}-8 & 24 \\ -4 & 12 \\ -16 & 48 \\ 4 & -12\end{array}\right]$
(12) $\left[\begin{array}{cc}4 & -2 \\ -3 & 6\end{array}\right]$. undefined

Order of SH: Mr. Incredible \rightarrow Dash \rightarrow Jack - Jack \rightarrow Edna \rightarrow Elastigirl \rightarrow Voyd \rightarrow Family \rightarrow Frozone \rightarrow Violet \rightarrow Logo
Sample Solutions:

Frozone

$$
\begin{aligned}
& {\left[\begin{array} { c c c | c }
{ 1 } & { - 2 } & { 1 } & { 1 } \\
{ 0 } & { 1 } & { 2 } & { 5 } \\
{ 1 } & { 1 } & { 3 } & { 8 }
\end{array} { } ^ { - R _ { 1 } + R _ { 3 } } \left[\left.\begin{array}{ccc|c}
1 & -2 & 1 & 1 \\
0 & 1 & 2 & 5 \\
0 & 3 & 2 & 7
\end{array}\right|^{-3 R_{2}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 1 \\
0 & 1 & 2 & 5 \\
0 & 0 & -4 & -8
\end{array}\right]\right.\right.} \\
& -\frac{1}{4} R_{3}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 1 \\
0 & 1 & 2 & 5 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& z=2 \\
& \begin{aligned}
y+2 z & =5 \\
y+4 & =5 \\
y & =1
\end{aligned} \\
& x-2 y+z=1 \\
& x-2+2=1 \\
& x=1 \\
& (1,1,2)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\text { INCREDIBLES2 }}{\text { 2unn nxen }}\left\{\begin{array}{l}
x+y+z=2 \\
2 x-3 y+2 z=4 \\
4 x+y-3 z=1
\end{array}\right. \\
& \text { Logo } \\
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
2 & -3 & 2 & 4 \\
4 & 1 & -3 & 1
\end{array}\right]_{\substack{-4 \\
-4 R_{1}++_{3}}}^{-2 R_{1} R_{2}}\left[\begin{array}{ccc|c}
-2 & -2-2 & -4 \\
0 & 11 & 1 & 2 \\
4 & -5 & 0 & 0 \\
0 & -3 & 1
\end{array}\right]^{-\frac{1}{s_{2}}}} \\
& {\left[\begin{array}{ccc|c}
1 & 1 & 2 \\
0 & 1 & 0 & 0 \\
4 & 1 & -3 & 1
\end{array}\right] \quad\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & 0 & 0 \\
0 & -3 & -7 & 0 \\
-7
\end{array}\right]\left[\begin{array}{ccc}
03 R_{2} R_{2} & 0 & 0 \\
\hline & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & -7 & -7
\end{array}\right]}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x+y+z=4 \\
-x+2 y+3 z=17 \\
2 x-y=-7
\end{array}\right.
$$

Mr. Incredible

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 4 \\
-1 & 2 & 3 & 17 \\
2 & -1 & 0 & -7
\end{array}\right]^{R_{1} R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 4 \\
0 & 3 & 4 & 21 \\
2 & -1 & 0 & -7
\end{array}\right]} \\
& -2 R_{1}+R_{3}^{-2-2-2-8} \\
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 4 \\
0 & 3 & 4 & 21 \\
0 & -3 & -2 & -15
\end{array}\right]^{2+23}\left[\begin{array}{ccc|c}
11 & 1 & 4 \\
0 & 3 & 4 & 21 \\
0 & 0 & 2 & 6
\end{array}\right]} \\
& x+y+z=4 \\
& x+3+3=4 \\
& x=-2 \\
& {\left[\begin{array}{lll|l}
1 & 1 & 1 & 4 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 3
\end{array}\right]} \\
& \begin{aligned}
& z=3 \quad y \cdot \frac{4}{3} z=7 \\
& y+4(3)=7 \\
&=7
\end{aligned} \\
& (-1+3,3) \\
& y+\frac{4}{3}(3)=7 \\
& \begin{array}{l}
y+y=7 \\
:= \pm 3
\end{array}
\end{aligned}
$$

Incredible Family

$$
\begin{aligned}
& \left\{\begin{array}{l}
10 x+10 y-20 z=60 \\
15 x+20 y+30 z=-25 \\
-5 x+30 y-10 z=45
\end{array}\right. \\
& x+y-2 z=6 \\
& \begin{array}{l}
3 x+4 y+6 z=-5 \\
-x+6 y-2 z=9
\end{array} \\
& {\left[\begin{array}{ccc|c}
1 & 1 & -2 & 6 \\
3 & 4 & 6 & -5 \\
-1 & 6 & -2 & 9
\end{array}\right]^{R_{1}+R_{3}}} \\
& (1,1,-2)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
12 \\
\frac{7}{4} \\
-23 \\
-23 \\
\frac{7}{161}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y+6 z=3 \\
x+y+3 z=3 \\
x+2 y+4 z=7
\end{array}\right. \\
& {\left[\begin{array}{lll|l}
1 & 1 & 6 & 3 \\
1 & 3 & 3 & 3 \\
1 & 2 & 4 & 7
\end{array}\right]^{-R_{1}+2}\left[\begin{array}{ccc|c}
1 & 1 & 3 & 3 \\
0 & -5 & -5 & 0 \\
1 & 2 & 4 & 7
\end{array}\right] \frac{-1}{3} 8_{2} \sigma_{R_{3}}} \\
& {\left[\begin{array}{lll|l}
11 & 6 & 3 \\
1 & 4 & 7 \\
7 & 1 & 1 & 0
\end{array}\right]^{-R_{1}, P_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 3 \\
0 & -2 & 4 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \begin{array}{l}
z=0 \\
y \\
y-j z=4 \\
y=4 \\
y=4
\end{array}} \\
& \begin{array}{l}
x+y+b z=3 \\
x+y+1=3
\end{array} \\
& \begin{array}{c}
x+y+0=3 \\
x+y=3
\end{array} \\
& x=-1 \\
& (-1,4,0)
\end{aligned}
$$

Baby Jack-Jack

$$
\begin{aligned}
& \text { Baby Jack-Jack } \\
& {\left[\begin{array}{ccc|c}
0 & 2 & 1 & 4 \\
1 & 1 & 0 & 4 \\
3 & 3 & -1 & 10
\end{array}\right]^{R_{1} R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 4 \\
0 & 2 & 1 & 4 \\
3 & 3 & -1 & 10
\end{array}\right]^{-3 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 4 \\
0 & 2 & 1 & 4 \\
0 & 0 & -1 & -2
\end{array}\right]}
\end{aligned}
$$

$\frac{1}{2} R_{2}$
$-R_{3}$$\left[\begin{array}{lll|l}1 & 1 & 0 & 4 \\ 0 & 1 & \frac{1}{2} & 2 \\ 0 & 0 & 1 & 2\end{array}\right]$
$z=2$
$y+\frac{1}{2} z=2$
$y+\frac{1}{2}(2)=2$
$x+y=4$
$x+1=4$

$$
\begin{array}{r}
y+1=2 \\
y=1
\end{array}
$$

$$
(3,1,2)
$$

Answer: $(-1,0,1)$

$$
\begin{aligned}
& 2 x-0=-2 \\
& 2 x=-2 \\
& \left\{\begin{array}{l}
x+2 y-z=9^{x=-1} \\
2 x-z=-2 \\
3 x+5 y+2 z=22
\end{array}\right. \\
& \text { Elastigirl } \\
& {\left[\begin{array}{ccc|c}
1 & 2 & -1 & 9 \\
2 & 0 & -1 & -2 \\
3 & 5 & 2 & 22
\end{array}\right]^{-2-4 R_{1}+R_{2}}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 9 \\
0 & -4 & 1 & -20 \\
3 & 5 & 2 & 22
\end{array}\right]} \\
& -3 R_{1}+R_{3}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 9 \\
0 & -4 & 1 & -20 \\
0 & -1 & 5 & -5
\end{array}\right] \quad\left[\begin{array}{ccc|c}
1 & 2 & -1 & 9 \\
0 & -4 & 1 & -20 \\
0 & 0 & -19 & 0
\end{array}\right] \\
& R_{2}+4 R_{3} \\
& -\frac{1}{19} R_{3}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 9 \\
0 & -4 & 1 & -20 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& -4 R_{3}\left[\begin{array}{llll}
0 & 4 & -20 & 20
\end{array}\right] \\
& -\frac{1}{4} R_{2}\left[\begin{array}{lll|l}
1 & 2 & -1 & 9 \\
0 & 1 & -\frac{1}{4} & 5 \\
0 & 0 & 1 & 0
\end{array}\right]^{\text {Answer: }(10,3,-2)} \quad(-1,5,0)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
2 & 1 & 0 & 7 \\
2 & -1 & 1 & 6 \\
3 & -2 & 4 & 11
\end{array}\right] \underset{\text { Voyd }}{\begin{array}{c}
R_{3}+-R_{1} \\
2
\end{array}}\left[\begin{array}{rrr|r}
1 & -3 & 4 & 4 \\
3 & -2 & 4 & 6 \\
\hline
\end{array}\right]} \\
& \left\{\begin{array}{l}
2 x+y=7 \\
2 x-y+z=6 \\
3 x-2 y+4 z=11_{-39-12-12}
\end{array}\right. \\
& {\left[\begin{array}{ccc|c}
1 & -3 & 4 & 4 \\
0 & 5 & -7 & -2 \\
3 & -2 & 4 & 11
\end{array}\right]+\quad-3 R_{1}+R_{3}\left[\begin{array}{ccc|c}
1 & -3 & 4 & 4 \\
0 & 5 & -7 & -2 \\
0 & 7 & -8 & -1 \\
3 & -1
\end{array}\right]} \\
& \left.\begin{array}{ccc}
-7 R_{2}+5 R_{3} \\
0 & -35 & 49 \\
0 & 35 & -40
\end{array}\right]\left[\begin{array}{ccc|c}
14 & -3 & 4 & 4 \\
0 & 5 & -7 & -2 \\
0 & 0 & 9 & 9
\end{array}\right] \quad \frac{1}{9} R_{3}\left[\begin{array}{ccc|c}
1 & -3 & 4 & 4 \\
0 & 5 & -7 & -2 \\
0 & 0 & 1 & 1
\end{array}\right] \\
& \frac{1}{5} R_{2}\left[\begin{array}{ccc|c}
1 & -3 & 4 & 4 \\
0 & 1 & -\frac{7}{5} & -\frac{2}{5} \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
z=1 \\
y-\frac{7}{5}=-\frac{2}{5} \\
y=1
\end{array}\right. \\
& (3,1,1) \\
& \text { Answer: }(-1,5,0) \\
& x-3+4=4 \\
& \begin{array}{l}
x+1=4 \\
x=3
\end{array}
\end{aligned}
$$

Dash

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 2 & -1 & -2 \\
1 & 0 & 1 & 0 \\
2 & -1 & -1 & -3
\end{array}\right] \sum\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
1 & 2 & -1 & -2 \\
2 & -1 & -1 & -3
\end{array}\right]} \\
& -R_{1}+R_{2}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 2 & -2 & -2 \\
2 & -1 & -1 & -3
\end{array}\right] \frac{1}{2} R_{2}\left[\begin{array}{cccc}
-1 & 0 & -1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 \\
2 & -1 & -1 & -3
\end{array}\right] \\
& -2 R_{1}+R_{3}\left[\begin{array}{ccc|c}
-2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 \\
0 & -1 & -3 & -3
\end{array}\right] R_{2}, R_{3}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 \\
0 & 0 & -4 & -4
\end{array}\right] \\
& {\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right] \begin{array}{cc}
z=1 & \begin{array}{c}
y=0 \\
y-z=-1 \\
y-1=-1
\end{array} \\
\begin{array}{c}
x+y+z=0 \\
x+0 \\
y
\end{array} & (-1,0,1)
\end{array}}
\end{aligned}
$$

