Name: \qquad Date: \qquad
Ms. Loughran
Do Now:

1. Find $A B$ and $B A$, if possible.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right] \\
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
A \text { and } B \text { are inverses }
\end{gathered}
$$

The identity matrix of a square matrix has entries of 1 on its main diagonal and 0 's as all other entries.
I_{2} means the identity matrix of a 2×2 matrix , I_{3} means the identity matrix of a 3×3 matrix and so on.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Let A be an $n \times n$ matrix. If there exists a matrix A^{-1} such that $A A^{-1}=I_{n}=A^{-1} A, A^{-1}$ is called the inverse of A.

1. Show that B is the inverse of A, where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right]
$$

Plan: $A B=B A=I_{2}$

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

2. Show that B is the inverse of A, where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & -1 \\
6 & -2 & -3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
-2 & -3 & 1 \\
-3 & -3 & 1 \\
-2 & -4 & 1
\end{array}\right]
$$

$$
\text { Plan: } A B=B A=I_{3}
$$

$$
A B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad B A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

To find the inverse of a 2×2 matrix we are going to use the determinant.

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then the determinant of A is $a d-b c$, and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
3. Find A^{-1} and verify that $A A^{-1}=A^{-1} A=I_{2}$

$$
\begin{aligned}
& \operatorname{det}(A)=12-10=2 \\
& A^{-1}=\frac{1}{2}\left[\begin{array}{cc}
3 & -5 \\
-2 & 4
\end{array}\right]=A^{-1}=\left[\begin{array}{cc}
\frac{3}{2} & \frac{-5}{2} \\
-1 & 2
\end{array}\right] \\
& A A^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad A^{-1} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

4. Find the inverse of A.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
7 & -4 \\
8 & 0
\end{array}\right] \\
\operatorname{det}(A)=0-(-32)=32 \\
A^{-1}=\frac{1}{32}\left[\begin{array}{cc}
0 & 4 \\
-8 & 7
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{1}{8} \\
-\frac{1}{4} & \frac{7}{32}
\end{array}\right]
\end{gathered}
$$

5. Find the inverse of B, if it exists.

$$
\begin{aligned}
& B=\left[\begin{array}{cc}
8 & 4 \\
-4 & -2
\end{array}\right] \\
& \operatorname{det}(B)=-16-(-16)=0
\end{aligned}
$$

$B^{\prime} s$ inverse does not exist B is not invertible

We can use inverses to solve systems of linear equations.

If A is an invertible matrix (if A has an inverse), the system of linear equations represented by $A X=B$ has a unique solution:

$$
\begin{aligned}
A X & =B \\
A^{-1} \cdot A X & =A^{-1} B \\
I X & =A^{-1} B
\end{aligned}
$$

6. Solve the system using the inverse, if possible.

$$
\begin{aligned}
& 2 x-5 y=15 \\
& 3 x-6 y=36
\end{aligned}
$$

$$
\left[\begin{array}{cc}
A & -5 \\
3 & -6
\end{array}\right] \cdot\left[\begin{array}{l}
X \\
y
\end{array}\right]=\left[\begin{array}{l}
B \\
36
\end{array}\right]
$$

(1) find A^{-1}

$$
P \operatorname{len}: X=A^{-1} \cdot B
$$

$$
\begin{gathered}
\operatorname{det}(A)=-12-(-15)=3 \\
A^{-1}=\frac{1}{3}\left[\begin{array}{ll}
-6 & 5 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
-2 & \frac{5}{3} \\
-1 & \frac{2}{3}
\end{array}\right]
\end{gathered}
$$

$$
X=A^{-1} B=\left[\begin{array}{c}
30 \\
9
\end{array}\right]
$$

7. Solve the system using the inverse, if possible.

$$
\left.\begin{array}{l}
{\left[\begin{array}{cc}
A \\
3 & \begin{array}{cc}
3 x+4 y=-2 \\
5 x+3 y=4 \\
3
\end{array}
\end{array}\right]\left[\begin{array}{c}
B \\
y
\end{array}\right]\left[\begin{array}{c}
-2 \\
4
\end{array}\right]}
\end{array} \quad X=\left[\begin{array}{c}
2 \\
3
\end{array}\right] \begin{array}{c}
X=A^{-1} \cdot B \\
-2
\end{array}\right] \begin{aligned}
& X=-2 \\
& y=-2
\end{aligned}
$$

8. $A=\left[\begin{array}{cc}3 & -2 \\ -4 & 6\end{array}\right] \quad B=\left[\begin{array}{cc}\frac{3}{5} & \frac{1}{5} \\ \frac{2}{5} & \frac{3}{10}\end{array}\right]$

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

9. $A=\left[\begin{array}{ccc}1 & 1 & -2 \\ -3 & -2 & 5 \\ -6 & 4 & 4\end{array}\right] \quad B=\left[\begin{array}{ccc}-14 & -6 & \frac{1}{2} \\ -9 & 4 & \frac{1}{2} \\ -12 & -5 & \frac{1}{2}\end{array}\right]$

Should bed if they were inverses

10.

For what values) of x does the matrix M

$$
\begin{array}{ll}
\begin{array}{ll}
M=\left[\begin{array}{ll}
x & 1 \\
2 & x+1
\end{array}\right] & \{x \mid x \neq-2,1\} \\
\operatorname{det}(m)=x^{2}+x-2 & \\
& \text { Let's find the inverse } \\
x^{2}+x-2=0 & m^{-1}=\frac{1}{x^{2}+x-2}\left[\begin{array}{cc}
x+1 & -1 \\
-2 & x
\end{array}\right] \\
(x+2)(x-1)=0 & m^{-1}=\left[\begin{array}{cc}
\frac{x+1}{x^{2}+x-2} & \frac{-1}{x^{2}+x-2} \\
\frac{-2}{x^{2}+x-2} & \frac{x}{x^{2}+x-2}
\end{array}\right]
\end{array} \$.
\end{array}
$$

Homework 02-06
(1)

$$
\begin{aligned}
& x=\frac{141}{31} \\
& y=\frac{-9}{62}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& x=-1 \\
& y=14 \\
& z=11
\end{aligned}
$$

(2)

$$
\begin{aligned}
& x=-.2 \\
& y=.7
\end{aligned}
$$

(4) Craner's Rule is not possible since

$$
\operatorname{det}=0
$$

