Do Now:

1. Solve for
$$x$$
:
$$\begin{vmatrix} 2x & 0 & 3 \\ 7 & 5 & -1 \\ 4 & 2 & x \end{vmatrix} = 8x^2 - 3x + 12$$

$$dt = 10x^{2} + 0 + 42 - (60 - 4x + 0)$$

$$dt = 10x^{2} + 4x - 18$$

$$10x^{2} + 4x - 18 = 8x^{2} - 3x + 12$$

$$2x^{2} + 7x - 30 = 0$$

$$(2x - 5)(x + 6) = 0$$

$$x = \frac{5}{2}, -6$$

Name:	Date:
PCH: Applications of Matrix Multiplication	Ms. Loughran

Do Now:

1. In a certain city the proportion of voters in each age group who are registered as Democrats, Republicans, or Independents are given by the following matrix.

			3×3	
		Age		.3 (5,001) +,60 (10,000) + -50 (12,000)
	18-30	31-50	Over 50	$.3(5,000) + .60(10,000) + .50(12,000)$ $\frac{3}{10}(5,000) + \frac{60}{100}(10,000) + \frac{1}{2}(12,000)$
Democrat Republican	0.30	0.60	$\begin{bmatrix} 0.50 \\ 0.25 \\ 0.25 \end{bmatrix} = A$	3 (6000) + 60 (12,000) + 5 (15,000)
Independent Political	Lo.20	o.os by a	0.25] ge	$\frac{3}{100} (6,000) + \frac{60}{100} (12,000) + \frac{1}{3} (15,000)$ $1800 + 7200 + 7,500$ $9,000+7,500$

The next matrix gives the distribution, by age and sex, of the voting population of this city.

Age |
$$18-30$$
 | 5.000 | 6.000 | 10.000 | 12.000 | 12.000 | 12.000 | Age by 9.00 | 12.000 | 1

For this problem, let's make the assumption that within each age group, political preference is not related to gender.

() 61 1 1 1	Male	Female
(a) Calculate the product AB .	13,500	16,500
Democrat Republican	9,000	10,950
Independent	4500	5550
9	L Polihica pa <i>tara</i>	ma hu andw

(b) How many males are registered as Democrats in this city? 13,500

(c) How many females are registered as Repubicans?

49. Fast-Food Sales A small fast-food chain with restaurants in Santa Monica, Long Beach, and Anaheim sells only hamburgers, hot dogs, and milk shakes. On a certain day, sales were distributed according to the following matrix.

	Number of items sold			
	Santa Monica	Long Beach	Anaheim	
Hamburgers	ς [4000	1000	3500	
Hot dog	s 400	300	200 =	
Milk shake:	s 700	500	9000	

The price of each item is given by the following m

Hamburger Hot dog Milk Shake [\$0.90 \$0.80 \$1.10] =
$$B$$

- (a) Calculate the product BA.
- (b) Interpret the entries in the product matrix BA.

Santa Monica Long Beach Anaheim

 1×3

(a)
$$BA = [4,690 1,690 13,210]$$

(b) The entires in BH rypresent the total food sales by location.

50. Car-Manufacturing Profits A specialty-car manufacturer has plants in Auburn, Biloxi, and Chattanooga. Three models are produced, with daily production given in the following matrix.

	Cars produced each day				
	Model K	Model R	Model \	W	3×3
Auburn	[12	10	07		
Biloxi	4	4	20	= A	
Chattanooga	8	9	12		

Because of a wage increase, February profits are less than January profits. The profit per car is tabulated by model in the following matrix.

	January	Februar	У	3x2
Model K	\$1000	\$500	1	
Model R	\$2000	\$1200	= B	
Model W	\$1500	\$1000_	}	

- (a) Calculate AB.
- (b) Assuming all cars produced were sold, what was the daily profit in January from the Biloxi plant?
- (c) What was the total daily profit (from all three plants) in February?