Exponential Growth

$$
n(t)=n_{0} e^{r t}
$$

$n_{0}=$ initial amount
r : rate of growth
t : time
$n(t)$: amount at time t

Radioactive Decay

$$
\left[\begin{array}{l}
m(t)=m_{0} e^{-r t} \\
m_{0}: \ln \text { initial mass } \\
r: r a t e \\
t: \text { him } \\
m(t): \text { mass at time } \\
\\
\frac{1}{2}=e^{-r h} \\
-r h=\ln \frac{1}{2} \\
-r h=\ln 2^{-1} \\
-r h=-\ln 2 \\
r h=\ln 2 \\
r=\frac{\ln 2}{h \in h a l f ~ l i f e ~} \\
o r \\
h=\frac{\ln 2}{r}
\end{array}\right.
$$

Name:
Date: \qquad
PCH: Practice with Natural Growth and Decay

You may use a calculator.

1. Polonium- 210 has a half-life of 140 days. Suppose a sample of this substance has a mass of 300 mg . How long will it take for the sample to decay to a mass of 200 mg ? Round your answer to 3 decimal places.

$$
\begin{array}{rlrl}
200 & =300 e^{-r t} & * \text { need } r: \\
200 & =300 e^{-\frac{\ln 2}{140} t} & r & =\frac{\ln 2}{140} \\
\frac{2}{3} & =e^{-\frac{\ln 2}{140} t} & \\
-\frac{140}{\ln 2} \cdot \ln \frac{2}{3} & =-\frac{\ln 2}{480} t \cdot \frac{400}{\ln 2} & t & =81.895 \mathrm{da} \\
81.8947 \ldots & =t &
\end{array}
$$

2. The half-life of strontium- 90 is 28 years. How long will it take a 50 mg sample to decay to a mass of 32 mg ? Round your answer to 3 decimal places.

$$
\begin{array}{ll}
32=50 e^{-\frac{\ln 2}{28} t} & r=\frac{\ln 2}{28} \\
\frac{32}{50}=e^{-\frac{\ln 2}{28} t} & \text { need } r . \\
-\frac{\ln 2}{28} t=\ln \left(\frac{32}{50}\right) & t=18.028 \text { years } \\
t=\ln \left(\frac{32}{50}\right) \cdot \frac{-28}{\ln 2}=18.0279 \ldots
\end{array}
$$

3. If 250 mg of a radioactive element decays to 200 mg in 48 hours, find the half-life of the element. Round your answer to 3 decimal places.

$$
\begin{aligned}
& \text { your answer to } 3 \text { decimal places. } \\
& 200=250 e^{-r(48)} \begin{aligned}
200 & =250 e^{-\frac{\ln 2}{n}(48)} \\
\frac{208}{258} & =e^{-\frac{\ln 2}{n}(48)} \\
\frac{4}{5} & =e^{-\frac{\ln 2}{n}(48)} \\
\ln \left(\frac{4}{5}\right) & =\frac{-48 \ln 2}{n}
\end{aligned} \quad \begin{array}{l}
h \ln \left(\frac{4}{5}\right)=-48 \ln 2 \\
h=\frac{-48 \ln 2}{\ln \left(\frac{4}{5}\right)}=149.1016 \ldots \\
149.102 \mathrm{hrs}
\end{array}
\end{aligned}
$$

4. A wooden artifact from an ancient tomb contains 65% of the carbon- 14 that is present in living trees. The half-life of carbon-14 is 5730 years. How long ago was the artifact made? Round your answer to 3 decimal places.

$$
r=\frac{\ln 2}{5730}
$$

$$
\begin{aligned}
& .65=e^{-\frac{\ln 2}{5730} t} \\
& \ln .65=-\frac{\ln 2}{5736} t \quad 3561.128 \mathrm{yrs} \\
& t=\ln .65 \cdot \frac{5730}{-\ln 2}=3561.12839 \ldots
\end{aligned}
$$

5. After 3 days a sample of radon- 222 has decayed to 58% of its initial amount. Find the half-life of radon-222. Then find how long it will take the sample to decay to 20% of its original amount. Round your answers to 3 decimal places.

$$
\begin{aligned}
& .58=e^{\frac{-\ln 2}{n}(3)} \\
& \ln .58=\frac{-3 \ln 2}{n} \\
& h \ln .58
\end{aligned} \quad .2=-3 \ln 2 \quad \ln .2=
$$

6. The population of the world in 2000 was 6.1 billion and the estimated relative growth rate was 1.4% per year. If the population continues to grow at this rate, during what year will it reach 122 billion?

$$
\begin{aligned}
& 122=6.1 e^{.014 t} \\
& \frac{122}{6.1}=e^{.014 t} \\
& .014 t=\ln \left(\frac{122}{6.1}\right) \quad \text { During } 2213 \\
& t=\frac{\ln \left(\frac{122}{6.1}\right)}{.014} \\
& t=\frac{213.9808 \ldots}{2000+213.9808 \ldots}
\end{aligned}
$$

7. The half-life of cesium-137 is 30 years. Suppose we have a 10 gram sample. How much of the sample will remain after 80 years? After how long will only 2 grams of the sample remain? Round your answers to 3 decimal places.

$$
\text { a) } \begin{aligned}
& y=10 e^{-\frac{\ln 2}{30}(80)} \\
& y=1.5749 \ldots
\end{aligned} \quad 1.575 \text { grams }
$$

b)

$$
\begin{aligned}
& 2=10 e^{-\frac{\ln 2}{30} t} \\
& .2=e^{-\frac{\ln 2}{30} t} \\
& \ln .2=\frac{-\ln 2}{30} t \\
& t=\ln .2\left(\frac{30}{-\ln 2}\right) \\
& t=69.6578 \ldots
\end{aligned}
$$

\qquad

Who Stole the Golden Cone?

IT WAS (WHO) Ms. Simon	SITH A (WHAT)	IN THE (WHERE)

Name: \qquad
PCH Conic Section CLUE Questions and Workspace

Answer the following for $x^{2}-y-8 x+19=0$

1. Identify the type of conic section.
2. What are the coordinates of the vertex?
3. In what direction does it open?
4. Sketch a graph.

Date: \qquad

$$
(x-4)^{2}=y-3
$$

- Sk e

$$
x^{2}-8 x+16=y-19+16
$$

Answer the following for $4 x^{2}-16 y^{2}-16 x+32 y-64=0$
5. Identify the type of conic section.
6. What are the coordinates of the center?
7. What are the coordinates of the vertices?

$$
4\left(x^{2}-4 x+4\right)-16\left(y^{2}-2 y+1\right)=64+16-1
$$

8. Sketch a graph.

$$
\begin{aligned}
& 4(x-2)^{2}-16(y-1)^{2}=64 \\
& \frac{(x-2)^{2}}{16}-\frac{(y-1)^{2}}{4}=1 \\
& \text { hyperbola } \\
& \text { center }(2,1) \\
& \text { vertices: }(6,1),(-2,1)
\end{aligned}
$$

Answer the following for $9 x^{2}+y^{2}-18 x-6 y+9=0$
9. Identify the type of conic section.
10. What are the coordinates of the center?
11. What are the coordinates of the vertices?
12. What are the coordinates of the covertices?
13. Sketch the graph.

$$
\begin{gathered}
9\left(x^{2}-2 x+1\right)+y^{2}-6 y+9=-9+9+9 \\
(x-1)^{2}+\frac{(y-3)^{2}}{9}=1_{V M A}^{a=3} \\
\text { ellipse } \quad y=1 \\
(1,3) \\
\text { vertices }(1,6),(1,0) \\
\text { Wrertices: }(0,3),(2,3)
\end{gathered}
$$

Answer the following for $x^{2}+y^{2}+2 x+6 y=26$
14. Identify the type of conic section.
15. What are the coordinates of the center?
16. What is the length of the radius?
17. Sketch the graph.

$$
\begin{gathered}
x^{2}+2 x+1+y^{2}+6 y+9=26+1+9 \\
(x+1)^{2}+(y+3)^{2}=36 \\
\text { center: }(-1,-3) \\
r=6
\end{gathered}
$$

