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PCH Ms. Loughran
Do Now:

For all values of the angle for which the expressions are defined, choose an equivalent
expression.
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PCH: Trigonometric Identities and Proofs Ms. Loughran
The Pythagorean Identities: Double Angle Formulas:
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You are familiar with the following reciprocal identities:
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An identity is an equation that is true for all permissible replacements of the variable.

Proving an identity:
To prove that a trigonometric statement is an identity, note:

1. The object is to show that the two sides of the statement are equivalent.
= You may work on only one side and show that it is equivalent to the other.
» Work on the more complicated side.
= You may work on the two sides independently until you arrive at equivalent
expressions.
» You may not perform operations involving the two sides simultaneously.
You are not solving an equation. That is, never cross the equal sign for
any purpose. As a reminder, use a line between sides.

2. Use the basic identities to transform one or both sides of the proposed identity.
= A general starting point is to rewrite expressions in terms of sine and cosine, but
be alert to situations when a Pythagorean substitution is appropriate.

3. After replacements have been made, do the algebra suggested by the form of the
expression.
= Ifthere is a complex fraction, simplify it.
= If'there are two fractions, combine them.
= Look for possibilities of factoring.
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6. Verify the identity:
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