Name:
PCH

Date:
Ms. Loughran

Do Now:
For all values of the angle for which the expressions are defined, choose an equivalent expression.

1. $\frac{-1}{\cos A}$ is equivalent to
(1) $\sec A$

- $-\sec A(3) \sin A$
(4) $-\sin A$

2. $\frac{\cot \theta}{\csc \theta}$ is equivalent to
(1) $\sec \theta$
(2) $\sin \theta$
(.) $\cos \theta$
(4) $\csc \theta$
$\frac{\cos \theta}{\sin \theta} \cdot \frac{\sin \theta}{1}$
3. $\frac{\sec \theta}{\csc \theta}$ is equivalent to
(1) $\sin \theta$
(2) $\cos \theta$

- $\tan \theta$
(4) $\cot \theta \quad \frac{1}{\cos \theta} \cdot \frac{\sin \theta}{1}=\frac{\sin \theta}{\cos \theta}$

4. $\frac{\sin \theta}{\tan \theta}$ is equivalent to
(1) $-\cos \theta$
(3) $1-\cos \theta$
(0) $\cos \theta$
(4) $1+\cos \theta$
$\sin \theta \cdot \frac{\cos \theta}{\sin \theta}$
5. $\frac{\sin ^{2} A}{\tan A}$ is equivalent to
(1) $\frac{\sin A}{\cos A}$
(3) $\frac{1}{\sin A \cos A}$
(*) $\sin A \cos A$
(4) $\frac{\cos A}{\sin A}$
$\sin ^{2} A \cdot \frac{\cos A}{\sin A}$
6. $\sin \theta$ is equivalent to
$\sin \theta$.
(4) $\frac{\sec \theta}{\tan \theta}$ C. $\frac{\tan \theta}{}$ (2) 1,
(3) $\sec \theta$
7. The expression $\frac{\tan x}{\sec ^{2} x}$ is equivalent to
(1) $\sin x$
(3) $\frac{\sin ^{3} x}{\cos x}$
$\frac{\sin x}{\cos x} \cdot \cos ^{2} x$
(C) $\sin x \cos x$
(4) $\frac{\cos ^{3} x}{\sin x}$

Name:
PCH: Trigonometric Identities and Proofs
The Pythagorean Identities:
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\tan ^{2} \theta+1=\sec ^{2} \theta$
$\cot ^{2} \theta+1=\csc ^{2} \theta$

Date:
Ms. Loughran

Double Angle Formulas:

$\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\begin{aligned}
& \cos 2 x=\left\{\begin{array}{l}
\cos ^{2} x-\sin ^{2} x \\
1-2 \sin ^{2} x \\
2 \cos ^{2} x-1
\end{array}\right. \\
& \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}
\end{aligned}
$$

You are familiar with the following reciprocal identities:

$$
\sec \theta=\frac{1}{\cos \theta}, \cos \theta \neq 0 \quad \csc \theta=\frac{1}{\sin \theta}, \sin \theta \neq 0 \quad \cot \theta=\frac{1}{\tan \theta}, \tan \theta \neq 0
$$

And the quotient identities:

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}, \cos \theta \neq 0 \quad \cot \theta=\frac{\cos \theta}{\sin \theta}, \sin \theta \neq 0
$$

An identity is an equation that is true for all permissible replacements of the variable.

Proving an identity:

To prove that a trigonometric statement is an identity, note:

1. The object is to show that the two sides of the statement are equivalent.
\Rightarrow You may work on only one side and show that it is equivalent to the other.
$>$ Work on the more complicated side.
\Rightarrow You may work on the two sides independently until you arrive at equivalent expressions.
> You may not perform operations involving the two sides simultaneously. You are not solving an equation. That is, never cross the equal sign for any purpose. As a reminder, use a line between sides.
2. Use the basic identities to transform one or both sides of the proposed identity. \Rightarrow A general starting point is to rewrite expressions in terms of sine and cosine, but be alert to situations when a Pythagorean substitution is appropriate.
3. After replacements have been made, do the algebra suggested by the form of the expression.
\Rightarrow If there is a complex fraction, simplify it.
\Rightarrow If there are two fractions, combine them.
\Rightarrow Look for possibilities of factoring.

Classwork

1. Simplify the expression: $\cos t+\tan t \sin t$

$$
\begin{aligned}
& \cos t+\frac{\sin t}{\cos t} \cdot \sin t \\
& \cos t+\frac{\sin ^{2} t}{\cos t} \\
& \frac{\cos ^{2} t+\sin ^{2} t}{\cos t}=\frac{1}{\cos t} \text { or } \sec t
\end{aligned}
$$

2. Simplify the expression: $\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}$

$$
\begin{aligned}
& \frac{\sin \theta(1+\sin \theta)+\cos ^{2} \theta}{\cos \theta(1+\sin \theta)} \\
& \frac{\sin \theta+\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta(1+\sin \theta)}=\frac{\sin \theta+1}{\cos \theta(1+\sin \theta)}=\frac{1}{\cos \theta} \text { or sec } \theta
\end{aligned}
$$

3. Verify the identity: $\cos \theta(\sec \theta-\cos \theta)=\sin ^{2} \theta$

$$
\begin{array}{r}
\cos \theta(\sec \theta)-\cos ^{2} \theta \\
1-\cos ^{2} \theta \\
\sin ^{2} \theta=\sin ^{2} \theta
\end{array}
$$

4. Verify the identity: $2 \tan x \sec x=\frac{1}{1-\sin x}-\frac{1}{1+\sin x}$ $\frac{1+\sin x-(1-\sin x)}{(1-\sin x)(1+\sin x)}$

$$
\begin{aligned}
& \frac{2 \sin x}{1-\sin ^{2} x} \\
& \frac{2 \sin x}{\cos ^{2} x} \\
& \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}
\end{aligned}
$$

$2 \tan x \sec x=2 \tan x \sec x$
5. Verify the identity: $\frac{\cos u}{1-\sin u}=\sec u+\tan u$

$$
\begin{gathered}
\frac{\cos u}{1-\sin u}=\sec u+\tan u \\
\frac{\cos u(1+\sin u)}{(1-\sin u)(1+\sin u)} \\
\frac{\cos u(1+\sin u)}{1-\sin ^{2} u} \\
\frac{\cos u(1+\sin u)}{\cos ^{2} u} \\
\frac{1+\sin u}{\cos u} \\
\frac{1}{\cos u}+\frac{\sin u}{\cos u}
\end{gathered}
$$

$\sec u+\tan u$
$\sec u+\tan a$

$$
\tan ^{2} \theta+1=\sec ^{2} \theta
$$

6. Verify the identity: $\frac{1+\cos \theta}{\cos \theta}=\frac{\tan ^{2} \theta}{\sec \theta-1}$

$$
\frac{\sec ^{2} \theta-1}{\sec ^{\theta} \theta-1}
$$

$$
\frac{(\sec \theta+1)(\sec \theta-1)}{\sec \theta-1}
$$

$$
\frac{1+\cos \theta}{\cos \theta}=\frac{\frac{1}{\cos \theta}+1}{\frac{1+\cos \theta}{\cos \theta}}
$$

7. Verify the identity: $(\sin x+\cos x)^{2}=1+\sin 2 x$

Homework 04-19
Last 4 from DM
(II)

$$
\begin{gathered}
\sin ^{2} x+2-\cos ^{2} x=3 \sin x \\
\sin ^{2} x+2-\left(1-\sin ^{2} x\right)=3 \sin x \\
\sin ^{2} x+2-1+\sin ^{2} x=3 \sin x \\
2 \sin ^{2} x-3 \sin x+1=0 \\
(2 \sin x-1 \quad(\sin x-1)=0 \\
\sin x=\frac{1}{2} \quad \sin x=1
\end{gathered}
$$

$$
x=\begin{gathered}
\frac{\pi}{6}+2 \pi k \\
\frac{5 \pi}{6}+2 \pi k \\
\frac{\pi}{2}+2 \pi k
\end{gathered}, \quad, \quad y \in z
$$

(12)

$$
\begin{aligned}
& 2 \cos ^{2} x+7 \cos x=4 \\
& 2 \cos ^{2} x+7 \cos x-4=0 \\
& (2 \cos x-1 \quad(\cos x+4)=0 \\
& \cos x=\frac{1}{2} \quad \cos x=-4 \\
& \theta
\end{aligned}
$$

$$
x=\frac{\frac{\pi}{3}+2 \pi k}{\frac{5 \pi}{3}+2 \pi k}, k \in z
$$

(13)

$$
\begin{aligned}
& \csc ^{2} x-\csc x+3=5 \\
& \csc ^{2} x-\csc x-2=0 \\
& (\csc x-2)(\csc x+1)=0 \\
& \csc x=2 \quad \csc x=-1 \\
& \sin x=\frac{1}{2} \quad \sin x=-1
\end{aligned}
$$

$$
x=\frac{\frac{\pi}{6}+2 \pi k}{5 \pi / 6}+2 \pi k, k \in Z
$$

(14)

$$
\begin{aligned}
& \text { 4) } \begin{array}{l}
6 \cos ^{2} x+6 \cos x+2=1+\cos x \\
6 \cos ^{2} x+5 \cos x+1=0 \\
(3 \cos x+1)(2 \cos x+1)=0 \\
\cos x=-\frac{1}{3} \quad \cos x=-\frac{1}{2}
\end{array}
\end{aligned}
$$

A ned calc.

$$
\cos ^{-1}\left(\frac{1}{3}\right)=1.2309 \ldots
$$

$$
x=\begin{aligned}
& \frac{2 \pi}{3}+2 \pi k \\
& \frac{4 \pi}{3}+2 \pi k \\
& 1.9106 \ldots+2 \pi k \\
& 4.3725 \ldots+2 \pi k
\end{aligned}, k \in 2
$$

