Name:
PCH

Date:
Ms. Loughran

Do Now:

1. Solve and express solution set in interval notation:

$$
\begin{aligned}
& \frac{(x-3)\left(2 x^{2}-7 x+3\right)}{(x-4)} \leq 0 \\
& \frac{(x-3)^{2}(2 x-1)}{x-4} \leq 0
\end{aligned}
$$

$$
\left[\frac{1}{2}, 4\right)
$$

Name:

Practice: Relations \& Functions

Use the given form of each relation to complete the other forms. Then determine if the relation is a function.

Is the relation also a function?

Is the relation also a function?
No for same reasons as 1
4] Rewrite the relation given in the scatter plot as a set of diagram.

x	y
1	-2
-3	-1
1	0
2	2
0	3

Is the relation also a function?

No for same reasons as 1 and 2

ordered pairs (NOT a table).

$(-3,0),(-2,-3)\}$

Is the relation also a function?
yes

Identify the domain and range, then determine if each graph shows a function or a relation only.

5]

Domain: $(-2,2]$
Range:
Function?

6]

Domain: $[-3,1]$
Range: $[-1,3]$
Function? No

7]

Domain: $(-2,2)$
Range: $[-4,0]$
Function?

Identify the domain and range, then evaluate each function for the given value of x .

8] $f=\{(10,7),(-2,4),(5,3),(4,10)\}$ Domain: $\{-2,4,5,10\}$ Range: $\{3,4,7,10\}$ $f(10)=7$	$\begin{aligned} & \text { 9] } \\ & \text { Domain: } \\ & \begin{array}{ll\|l} \{-3, & y \\ \text { Range: } & -1,0,1\} & 3 \\ \{0,1 & 1 \\ 0 & 0 \\ 1 & 1 & 1 \end{array} \\ & f(-1)=1 \end{aligned}$	10] Domain: $\{-3,-1,1,2\}$ Range: $\{(-3)=-1$
	 Domain: $[0,8)$ $\text { Range: }[-3,1]$ $\begin{aligned} & f(0)=-3 \\ & f(8)=\text { not defined } \end{aligned}$	 Domain: $[0, \infty)$ $\{x \mid x \geq 0\}$ Range: $[-3, \infty)$ $\begin{aligned} & \{y \mid y \geqslant-3\} \\ & f(4)=1 \end{aligned}$
14] Domain: $(-\infty, \infty)$ $\{x \mid x \in \mathbb{R}\}$ Range: $(-\infty, 4]$ $f(-3)=$	 Domain: $(-\infty, \infty)$ Range: $[-6, \infty)$ $f(2)=-4$	 Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ $f(-2)=0$

17. If $f(x)=\sqrt{x+4}$, find
(a) $f(-1)=\sqrt{-1+4}=\sqrt{3}$
(b) $f(a)=\sqrt{a+4}$
(c) $f(x+h)=\sqrt{x+h+4}$
(d) $f($ ()) $=\sqrt{\Theta+4}$

More Practice

For exercises 1-6. decide whether each graph is the graph of a function. Then determine domain and range.
1.

(a) Is it a function? No
(b) Domain: $[-6,6]$
(c) Range: $[-6,6]$
4.

(a) Is it a function? Yes
(b) Domain: $[-2,7]$
(c) Range: $[-9,7]$
2.

(a) Is it a function? yes
(b) Domain: $[-2,8]$
(c) Range: $[-7,8]$
5.

(a) Is it a function? Yes
(b) Domain: $[-6,4]$
(c) Range: $[-9,7]$
(a) Is it a function? No
(b) Domain: $[-8,5]$
(c) Range: $[-5,8]$
3.

(a) Is it a function? No
(b) Domain: $[0,4]$
(c) Range: $[-4,4]$
6.

For exercises 7-9, use each table to determine whether the relation is a function. Then determine the domain and range.
7.

x	2	4	6	8	10
y	1	3	5	7	9

(a) Is it a function? Yes
(b) Domain: $\{2,4,6,8,10\}$
(c) Range: $\{1,3,5,7,9\}$
8.

x	2	2	4	4	6
y	-5	0	5	10	15

(a) Is it a function? No
(b) Domain: $\{2,4,6\}$
(c) Range: $\{-5,0,5,10,15\}$
(c) Range: $\{-5,5,15\}$
(a) Is it a function?

(b) Domain: $\{1,2,3,4,5\}$
10. If $f(x)=x^{2}-2 x+1$, find
(a) $f(2)=2^{2}-2(2)+1=1$
(b) $f(\sqrt{5})=(\sqrt{5})^{2}-2 \sqrt{5}+1=6-2 \sqrt{5}$
(c) $f(-1+\sqrt{2})=(-1+\sqrt{2})^{2}-2(-1+\sqrt{2})+1=1-2 \sqrt{2}+2+2-2 \sqrt{2}+1=6-4 \sqrt{2}$
(d) $f(2 w+1)=(2 w+1)^{2}-2(2 w+1)+1=4 w^{2}+46+1-y w-2+1=4 w^{2}$

Homework 10-02

$$
\begin{aligned}
& \text { 2. } 100-29 x^{2} \leq-x^{4} \\
& x^{4}-29 x^{2}+100 \leq 0 \\
& \left(x^{2}-25\right)\left(x^{2}-4\right) \leq 0 \\
& \underset{+-5--2+2-5+}{0} \quad= \\
& \text { SB }\{x \mid-5 \leq x \leq-2 \vee 2 \leq x \leq 5\} \\
& \text { IN: }[-5,-2] \cup[2,5]
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { 3. } 15-2 x^{2}>7 x \\
-2 x^{2}-7 x+15>0 \\
2 x^{2}+7 x-15<0 \\
(2 x-3)(x+5)<0
\end{array} \\
\begin{array}{c}
-5 \\
+\quad \frac{3}{2}+ \\
\text { SB: }\{x \mid-5<x<3 / 2\} \quad \text { In: }\left(-5, \frac{3}{2}\right)
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
(5 x-3)^{2} \\
\text { 4. } \frac{25 x^{2}-30 x+9}{2 x^{2}+3 x-35} \geq 0 \\
(2 x-7)(x+5)
\end{array} \\
& \underset{\substack{-5 \\
\\
\hdashline}}{0}-\frac{3}{5}-\frac{7}{2}+
\end{aligned}
$$

$$
\text { 5. } \frac{x+3}{4-x} \leq 3
$$

$$
S B:\left\{x \left\lvert\, x^{<}-5 \vee x>\frac{7}{2} \vee x=\frac{3}{5}\right.\right\}
$$

$$
\begin{aligned}
& \frac{x+3}{4-x}-3 \leq 0 \\
& \frac{x+3-3(4+x)}{4-x} \leq 0
\end{aligned}
$$

$$
\text { in: }(-\infty,-5) \cup\left\{\frac{3}{5}\right\} \cup\left(\frac{7}{2}, \infty\right)
$$

b) $\left\{x \left\lvert\, x \leq 1 \frac{9}{4} \vee x>4\right.\right\}-\frac{9}{4}+4 \longrightarrow$
c) $\left(-\infty,+\frac{9}{4}\right] \cup(4, \infty)$

