Do Now: From yesterday’s Do Now sheet \#s 4-6
5. If $h(x)=3 x+5$ and $h(a)=27$, then what is the value of a ?

$$
\begin{aligned}
3 a+5 & =27 \\
3 a & =22 \\
a & =\frac{22}{3}
\end{aligned}
$$

6. For the function f graphed in the $x y$-plane above, if $f(-2.5)=k$, then what is $f(2 k)$?

$$
K=1
$$

$$
f(2(1))=f(2)=0
$$

4. For any positive integer n, let n° be defined by $n^{\circ}=2 n(n+1)$. What is the value of $\frac{8^{\circ}}{2^{\circ}}$?
(A) 2°
(B) 4°
(C) 6°
(D) 8°
(E) 10°

$$
\frac{z^{4}(8)(8+1)}{\left.2(2)^{2}\right)(2+1)}=\frac{4(4)}{3}=12
$$

Name:
PCH: Review of Linear Functions

Date:
Ms. Loughran

A linear function is a function defined by the equation $f(x)=m x+b$, where " m " is called the slope and " b " is called the y-intercept. This equation is called the slope intercept form of a line. The graph of a linear equation is a straight line.

Formula for slope:

$$
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{\Delta y}{\Delta x}
$$

Other ways to write the equation of a line:
Point slope:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Standard form:

$$
A x+B y=C \quad \begin{aligned}
& \quad A, B+C \text { are } \\
& \\
& \text { non fractional }
\end{aligned}
$$

Parallel lines have \qquad slopes.

II
$\underset{\perp}{\text { Perpendicular lines have slopes that are negative reciprocals }}$.
Horizontal lines are in the form $y=$ Constant. Slope of a horizontal line is \qquad .

Vertical lines are in the form $x=$ Constant. Slope of a vertical line is undefined

Exercises

1. Find the slope of the line passing through each pair of points.
(a) $(-2,0)$ and $(3,1)$
(b) $(-1,2)$ and $(2,2)$
(c) $(0,4)$ and $(1,-1)$
$m=\frac{0-1}{-2-3}=\frac{1}{5} \quad m=\frac{2-2}{2-(-1)}=0$
2. Find an equation of the line that passes through the point $(1,-2)$ and has a slope of 3 in:
(a) point slope form
(b) slope intercept form $(y=m x+b)$
(c) standard form
$y+2=3 x-3$
(B) $y=3 x-5$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+2=3(x-1)
\end{aligned}
$$

(c)

$$
3 x-y=5
$$

Q
3. Find an equation of the line, in standard form, that passes through the points $(-4,0)$ and $(2,3)$.

$$
(-4,0)
$$

$$
m=\frac{3-0}{2-(-4)}=\frac{1}{2}
$$

5. State an equation of a line that contains the point whose coordinates are $(1,-2)$ and perpendicular to the line whose equation is $x+3 y=6$.

$$
\begin{aligned}
3 y= & -x+b \\
y= & -\frac{1}{3} x+2 \\
& m=-\frac{1}{3} \\
& \perp \text { ins : slopes are negative reciprocal } \\
& m=3
\end{aligned}
$$

6. State an equation of a line that contains the point whose coordinates are $(3,-2)$ and is parallel to the line whose equation is $3 x+7 y=9$.
7. State an equation of a line that contains the point whose coordinates are $(-5,1)$ and is perpendicular to the line whose equation is $3 x-8 y=2$.

Write the equation of the line from graph and also write domain and range. Find x and y intercepts. Determine whether or not each is a function.
8.

10.

9.

11.

13.

yes

14.

$$
\begin{aligned}
x-n t(\text { ct } y & =0) \\
0 & =-\frac{1}{4} x+\frac{15}{4} \\
-\frac{15}{4} & =-\frac{1}{4} x \\
-15 & =-x \\
15 & =x
\end{aligned}
$$

Homework 10-05
4. $f(x)=6 x-x^{2}$

$$
\frac{6(x+h)-(x+h)^{2}-\left(b x-x^{2}\right)}{h}
$$

$\frac{6 x+6 h-x^{2}-2 x h-h^{2}-6 x+x^{2}}{h}$

$$
\begin{gathered}
\frac{6 h-2 x h-h^{2}}{h}=6-2 x-h, \quad h \neq 0 \\
(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}
\end{gathered}
$$

6. $f(x)=2 x^{3}$

$$
\begin{aligned}
& \frac{2 x^{3}+6 x^{2} h+6 x h^{2}+2 h^{3}-2 x^{3}}{h} \\
& \frac{b\left(6 x^{2}+6 x h+2 h^{2}\right)}{h}=6 x^{2}+6 x h+2 h^{2}, h \neq 0
\end{aligned}
$$

8. $f(x)=\frac{1}{x+2}$

$$
\begin{aligned}
& \frac{1}{x+h+2}-\frac{1}{x+2}(x+h+2+2 x+2(x+2) \\
& \frac{1(x+2)}{x+h+2)(x+2)} \quad \begin{array}{l}
x \neq-2,-h-2 \\
h \neq 0
\end{array} \\
& \frac{x+x-\not x-h-2}{h(x+h+2)(x+2)}=\frac{-k}{K(x+h+2)(x+2)}=\frac{-1}{(x+h+2)(x+2)}
\end{aligned}
$$

9. $f(x)=\frac{1}{2 x^{2}}$

$$
\begin{aligned}
& \frac{1}{2 x^{2}} \frac{1}{\frac{2(x+h)^{2} x^{2}}{2(x+h)^{2}}-\frac{1}{2 x^{2}}} \underset{h 2(x+h)^{2} x^{2}}{2(x+h)^{2} x^{2}} \quad x \neq 0,-h \\
& \frac{x^{2}-(x+h)^{2}}{2 x^{2} h(x+h)^{2}} \\
& \frac{x^{2}-x^{2}-2 x h-h^{2}}{2 x^{2} h(x+h)^{2}} \\
& \frac{h(-2 x-h)}{2 x^{2} h(x+h)^{2}}=\frac{-2 x-h}{2 x^{2}(x+h)^{2}}
\end{aligned}
$$

11. $f(x)=\sqrt{5 x+6}$

$$
\begin{array}{r}
h \neq 0 \\
\frac{-5}{\sqrt{5 x+5 h+6}}+\sqrt{5 x+6}
\end{array}
$$

