Name: \qquad Date: \qquad
PCH: Algebraic Definition of Absolute Value

Do Now:

1. Write an equation, in standard form, that is perpendicular to the line $5 x-2 y=2$
and that passes through the point $(-2,-6)$. $5 x-2=2 y$

$$
\begin{aligned}
& m_{\perp}=-\frac{2}{5} \\
& 5(y+6\left.=-\frac{2}{5}(x+2)\right) \\
& 5 y+30=-2(x+2) \\
& 5 y+30=-2 x-4 \\
& 2 x+5 y=-34
\end{aligned}
$$

2. Write equations for each piecewise function whose graph is shown:
(a)

(b)

(c)

$$
f(x)=\left\{\begin{array}{ccc}
-x & x<0 \\
x & x \geq 0 & g(x)=\left\{\begin{array}{cc}
-3 x+2 & x \leq 2 / 3 \\
3 x-2 & x>2 / 3
\end{array}\right. \\
-3 x+2=0 \\
2=3 x \\
\frac{2}{3}=x
\end{array}\right.
$$

$$
f(x)=|x|
$$

$g(x)=|3 x-2|$
$h(x)=|2 x+3|$

Algebraic definition of Absolute Value:
For any real number x,

$$
|x|=\left\{\begin{array}{cc}
x & x \geqslant 0 \\
-\chi & x<0
\end{array}\right.
$$

Use the algebraic definition of absolute value to rewrite each expression and then sketch the graph on a separate piece of graph paper. Then find the domain and range of each graph.

$$
\text { 1. }|x+1|= \begin{cases}x+1 & x+1 \geqslant 0, \\ -(x+1) \text { or }-x-1 & x<-1\end{cases}
$$

$$
x+1 \geqslant 0, x \geqslant-1
$$

$$
\begin{aligned}
& D:(-\infty, \infty) \\
& R:[0, \infty)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10. } \frac{|x+2|}{x+2}=\left\{\begin{array}{l}
\frac{x+2}{x+2}=1 \quad x+2>0, x>-2
\end{array}\right. \\
& \text { trensformation of } \\
& \underset{|c|}{|x|} \rightarrow \text { moves it } \\
& \text { unite } \\
& \frac{-(x+2)}{x+2}=-1 \\
& x<-2 \\
& R:\{ \pm 1\} \\
& \text { 11. } \frac{|x-1|}{1-x}=\left\{\begin{array}{rr}
\frac{x-1}{1-x}=-1 & x-1>0, x>1 \\
\frac{-(x-1)}{1-x}=1 & x<1
\end{array}\right. \\
& D:(-\infty, 1) \cup(1, \infty) \\
& R:\{ \pm 1\}
\end{aligned}
$$

14. $|x|-x=\left\{\begin{array}{cc}X-X=0 & x \geqslant 0 \\ -X-X=-2 x & x<0\end{array}\right.$

Homework 10-18

Name: Key
Date: \qquad
: More Piecewise Functions
Evaluate:

1. $f(x)= \begin{cases}3-x, & x \leq 1 \\ 2 x, & x>1\end{cases}$
$f(0)=3$
$f(1)=2$
$f(2.5)=5$
2. $f(x)= \begin{cases}1, & x<0 \\ \sqrt{x}, & x \geq 0\end{cases}$

$$
\begin{aligned}
& f(-1)=\frac{1}{0} \\
& f(0)=\frac{0}{5} \\
& f(5)=\sqrt{5}
\end{aligned}
$$

3. $f(x)= \begin{cases}\frac{1}{x}, & x<0 \\ -3 x, & x \geq 0\end{cases}$
4. $f(x)=\left\{\begin{array}{lc}4-x^{2}, & x<1 \\ \frac{3}{2} x+\frac{3}{2}, & 1 \leq x \leq 3 \\ x+3, & x>3\end{array}\right.$

$$
f(-1)=-1
$$

$$
f(.5)=4-(.5)^{2}=4-.25=3.75
$$

$$
f(0)=0
$$

$$
f(\pi)=-3 \pi
$$

5. $f(x)= \begin{cases}1, & x<5 \\ 0, & x \geqslant 5\end{cases}$
6. $f(x)= \begin{cases}x^{2}, & x<0 \\ x^{3}, & 0 \leq x \leq 1 \\ 2 x-1, & x>1\end{cases}$

$$
\begin{aligned}
& f(-1)=\frac{1}{1} \\
& f(1)=1 \\
& f(0)=1 \\
& f(2.5)=4
\end{aligned}
$$

Sketch each function below without using a graphing calculator. Find the domain and range of each function. Remember, all functions must pass the vertical line, test.
7. $f(x)= \begin{cases}x-3, & x \leq 1 \\ 2 x, & x>1\end{cases}$

$$
\begin{aligned}
& D_{f}=(-\infty, \infty) \\
& R_{f}=(-\infty,-2] \cup(2, \infty)
\end{aligned}
$$

$$
f(0)=-3
$$

$$
f(1)=\frac{-2}{4}
$$

8. $f(x)= \begin{cases}2, & x \geq 5 \\ -2 x, & -2 \leq x<3 \\ 2-x^{2}, & x<-2\end{cases}$

$$
\begin{aligned}
& D_{f}=(-\infty, 3) \cup[5, \infty) \\
& R_{f}=(-\infty, 4]
\end{aligned}
$$

Evaluate:

$$
\begin{aligned}
& f(-2)=\frac{4}{2} \\
& f(5)=
\end{aligned}
$$

9. $f(x)= \begin{cases}\sqrt{x+3}, & x \geq 1 \\ -x, & x<0\end{cases}$

$$
\begin{aligned}
& D_{f}=(-\infty, 0) \cup[1, \infty) \\
& R_{f}=(0, \infty)
\end{aligned}
$$

Evaluate: $\quad f(1)=\frac{2}{3}$

$$
f(6)=3
$$

$$
f(0)=\text { not defined }
$$

10. $f(x)=\left\{\begin{array}{cc}2 x+3, & x<-1 \\ |x|-5, & -1 \leq x<2 \\ 1, & x \geq 3\end{array}\right.$

$$
\begin{aligned}
& D_{f}=\frac{(-\infty, 2) \cup[3, \infty)}{} \\
& R_{f}=(-\infty, 1]
\end{aligned}
$$

Evaluate: $\quad f(1)=-4$

$$
\begin{aligned}
& f(6)=1 \\
& f(0)=-5
\end{aligned}
$$

11. $f(x)= \begin{cases}-x, & -4 \leq x<-2 \\ x-3, & -2 \leq x<1 \\ x^{2}-2, & x \geq 1\end{cases}$

$$
\begin{aligned}
& D_{f}=[-4, \infty) \\
& R_{f}=[-5,-2) \cup[-1, \infty)
\end{aligned}
$$

Evaluate:

$$
\begin{aligned}
& f(-4)=\frac{4}{-5} \\
& f(-2)=\frac{-1}{-1} \\
& f(1)=
\end{aligned}
$$

