Do Now
Factor each of the following completely
(1) $x^{4}-10 x^{2} y^{2}+25 y^{4}$

(3) $4 a^{7} b^{3}-10 a^{6} b^{2}-24 a^{5} b$

(7) $2 x^{6}+128 y^{9}$
$2\left(x^{6}+6 y^{4}\right)$
$2\left(x^{2}+4 y^{3}\right)\left(x^{4}-4 x^{2} y^{3}+10 y^{4}\right)$

(6) $\left(4 x^{2}+5 x\right)^{2}-5\left(4 x^{2}+5 x\right)-6$

$\left.(4 x-3)^{x}+2\right)^{(x+1)}(x+1)$
(8) Given $q(x)=\frac{1}{3 x^{2}-2}$, create functions, g and h
such that $g(x)=g \circ f \circ h$. (in 2 different

$$
\begin{array}{lll}
h(x)=x^{2} & h(x)=3 x^{2} \\
f(x)=3 x-2 & \text { or } & f(x)=x+2 \\
g(x)=\frac{1}{x} & & g(x)=\frac{1}{x-4}
\end{array}
$$

Name:
PCH: Review of Inverses

Date:
Ms. Loughran

The functions f and g are inverse functions if $f(g(x))=g(f(x))=x$.
Example 1:
Let $f(x)=2 x+1$ and $g(x)=\frac{x-1}{2}$, are f and g inverse functions?

$$
\begin{array}{ll}
f(g(x)) \stackrel{?}{=} g(f(x)) \stackrel{!}{=} x \\
f\left(\frac{x-1}{2}\right) & g(2 x+1) \\
2\left(\frac{x-1}{2}\right)+1 & \frac{2 x+x}{2} \\
\frac{x-1+1}{x} & \frac{2 x}{2}
\end{array}
$$

The symbol f^{-1} is often used for the inverse of function f. The inverse "undoes" or reverses what the function has done. The inverse of a function interchanges the domain and range. That is for every point (a, b) on the graph of f , there is a point (b, a) on the graph of the inverse of f. The graphs of a function and its inverse are symmetric with respect to the line $y=x$.

A function whose inverse is also a function is called one to one. (can also be written as 1-1) It is easy to detect a one to one function from its graph using the horizontal line test. A function is $1-1$ if and only if no horizontal line intersects the graph more than once.

Practice
Use compositions to prove if the given functions are inverses.

1) $g(x)=4-\frac{3}{2} x$
2) $g(n)=\frac{-12-2 n}{3}$

$$
f(x)=\frac{1}{2} x+\frac{3}{2}
$$

$$
f(n)=\frac{-5+6 n}{5}
$$

3) $f(n)=\frac{-16+n}{4}$
4) $f(x)=-\frac{4}{7} x-\frac{16}{7}$

$$
g(n)=4 n+16
$$

$$
g(x)=\frac{3}{2} x-\frac{3}{2}
$$

5) $f(n)=-(n+1)^{3}$
6) $f(n)=2(n-2)^{3}$

$$
g(n)=3+n^{3}
$$

7) $f(x)=\frac{4}{-x-2}+2$
8)

$$
h(x)=-\frac{1}{x+3}
$$

$$
\begin{aligned}
& g(x)=-\frac{2}{x}-1 \\
& f(x)=-\frac{2}{x+1}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& f(g(n)) \stackrel{?}{=} g(f(n)) \stackrel{?}{=} n \\
& f\left(3+n^{3}\right) \\
& -\left(3+n^{3}+1\right)^{3} \\
& -\left(n^{3}+4\right)^{3} \\
& x_{n} \text { so fund } g \text { are not invussis }
\end{aligned}
$$

Find the inverse of each function.
9) $h(x)=\sqrt[3]{x}-3$
metol one

10) $g(x)=\frac{1}{x}-2$
12) $g(x)=-4 x+1$
13) $g(x)=\frac{7 x+18}{2}$
14) $f(x)=x+3$
15) $f(x)=-x+3$
16) $f(x)=4 x$

$$
\text { 17) } h(x)=\frac{3}{-x-2}
$$

$$
f(x)=-\frac{3}{-x-3}-2
$$

19) If $g(x)=3 x-7$, find $g^{-1}(-1)$.

$$
\begin{aligned}
& \text { 19) If } g(x)=3 x-7 \text {, find } g^{-1}(-1) \text {. } \\
& g^{-1}(x)=\frac{x+7}{3} \\
& g^{-1}(x)=\frac{-1+7}{3}=2
\end{aligned}\left\{\begin{array}{c}
3 x-7=-1 \\
3 x=6 \\
x=2
\end{array}\right.
$$

20) If $f(x)=\frac{2 x-1}{x+2}$, find $f^{-1}(-3)$.

Find f^{-1}

$$
x=\frac{2 y-1}{y+2}
$$

$$
x y+2 x=2 y-1
$$

$$
x y-2 y=-1-2 x
$$

$$
\left\{\left\{\begin{array}{r}
\frac{2 x-1}{x+2}=-3 \\
-3 x-6=2 x-1 \\
-5=5 x \\
-1=x
\end{array}\right\}\right.
$$

$y(x-2)=-1-2 x$

$$
\left.\begin{array}{rl}
f^{-1}(-3)=\frac{-1-2(-3)}{-3-2} & =\frac{5}{-5} \\
& =-1
\end{array}\right\}
$$

$$
y=\frac{2 x-1}{x+2}
$$

(21) $4=g(x)^{-2 x}=1+\sqrt[3]{2 x+1}$, find $g^{-1}(4)$.

