Do Now Factor each of the following completely $(4) X^{4} + \frac{10x^{2}y^{2} + 169y^{4}}{(x^{2} + 13y^{2})^{2}} + \frac{10y^{4}}{10x^{2}y^{2}} + \frac{10y^{4}}{10x^{2}y^{2}} + \frac{10x^{2}y^{2}}{(x^{2} + 13y^{2})^{2}} - \frac{10x^{2}y^{2}}{10x^{2}y^{2}} + \frac{10x^{2}y^{2}}{(x^{2} + 13y^{2} - 4xy)(x^{2} + 13y^{2} + 4xy)}$ $\underbrace{0}_{(x^2-5y^2)}^{\chi^4} \underbrace{-10x^2y^2 + 25y^4}_{\text{Purfect}} \underbrace{x^2-5y^2}_{\text{Square}} \underbrace{-10x^2y^2 + 25y^4}_{\text{Purfect}} \underbrace{-10x^2y^2 + 25y^4}_{\text{Square}} \underbrace{-10x^2y^2 +$ $\begin{array}{c} (5) & 2\chi^{5} + \chi^{4} - 2\chi^{3} - \chi^{a} - 4\chi - 2 \\ \chi^{4}(2\chi+1) - \chi^{2}(2\chi+1) - 2(2\chi+1) \\ & (\chi^{4} - \chi^{2} - 2\chi)(2\chi+1) \\ & (\chi^{a} + 1\chi^{a} - 2\chi)(2\chi+1) \end{array}$ $2x^{2} + 7xy - 15y^{2}$ Wess i (2x-3y)(x+5y) Wess i (2) Grouping with (3) $4a^{7}b^{3} - 10a^{6}b^{2} - 24a^{5}b$ $2a^{5}b(2a^{2}b^{2}-5ab-12)$ $2a^{5}b(2ab+3)(2ab-4)$ (7) $2x + 128y^{9}$ $(4x^{2}+5x)^{2}-5(4x^{2}+5x)-6$ y = 4x²+5x y²-5y-b (y-b)(y+1) Subsh' tution quess & whick on $(4x^{2}+5x-b)(4x^{2}+5x+1)$ $2(X^{b}+64y^{9})$ each trinomid (4x - 3)(x + 2)(4x + 1)(x + 1) $2(x^{2}+4y^{3})(x^{4}-4x^{2}y^{3}+1by^{6})$

(3) (riven
$$q(x) = \frac{1}{3x^3 - 2}$$
, create functions f, g and h
such that $q(x) = g \cdot f \cdot h$. (in 2 different
ways)
 $h(x) = x^2$
 $f(x) = 3x - 2$ or $h(x) = 3x^3$
 $f(x) = -\frac{1}{x}$ or $f(x) = -\frac{1}{x - 4}$

Name:_____ PCH: Review of Inverses Date: _____ Ms. Loughran

The functions f and g are inverse functions if f(g(x)) = g(f(x)) = x.

Example1:

Let
$$f(x) = 2x + 1$$
 and $g(x) = \frac{x - 1}{2}$, are f and g inverse functions?

$$\begin{aligned}
f'(g(x)) &\stackrel{?}{=} g(f(x)) \stackrel{?}{=} \chi \\
f(\frac{x - 1}{2}) & g(2x + 1) \\
\chi(\frac{x - 1}{2}) + 1 & \chi \\
\chi(\frac{x - 1}{2}) & g(2x + 1) \\
\chi(\frac{x - 1}{2$$

The symbol f^{-1} is often used for the inverse of function f. The inverse "undoes" or reverses what the function has done. The inverse of a function interchanges the domain and range. That is for every point (a,b) on the graph of f, there is a point (b,a) on the graph of the inverse of f. The graphs of a function and its inverse are symmetric with respect to the line y = x.

A function whose inverse is also a function is called one to one. (can also be written as 1-1) It is easy to detect a one to one function from its graph using the **horizontal line test.** A function is 1-1 if and only if no horizontal line intersects the graph more than once.

Practice

Use compositions to prove if the given functions are inverses.

1) $g(x) = 4 - \frac{3}{2}x$ $f(x) = \frac{1}{2}x + \frac{3}{2}$ 2) $g(n) = \frac{-12 - 2n}{3}$ $f(n) = \frac{-5 + 6n}{5}$

3)
$$f(n) = \frac{-16+n}{4}$$

 $g(n) = 4n+16$
4) $f(x) = -\frac{4}{7}x - \frac{16}{7}$
 $g(x) = \frac{3}{2}x - \frac{3}{2}$

5)
$$f(n) = -(n+1)^3$$

 $g(n) = 3 + n^3$
6) $f(n) = 2(n-2)^3$
 $g(n) = \frac{4 + \sqrt[3]{4n}}{2}$

7)
$$f(x) = \frac{4}{-x-2} + 2$$

 $h(x) = -\frac{1}{x+3}$
8) $g(x) = -\frac{2}{x} - 1$
 $f(x) = -\frac{2}{x+1}$

$$\begin{array}{l} \textcircled{\texttt{G}} & f(g(n)) \stackrel{?}{=} g(f(n)) \stackrel{?}{=} n \\ f(3+n^3) \\ & -\left(3+n^3+1\right)^3 \\ & -\left(n^3+4\right)^3 \\ & \swarrow n \end{array}$$

Find the inverse of each function.

Find the inverse of each function.
9)
$$h(x) = \sqrt[3]{x} - 3$$

modulo one
 $y = \sqrt[3]{x} - 3$
 $x = \sqrt[3]{y} - 3$
 $(x+3)^3 = y$
11) $h(x) = 2x^2 + 3$
 $y = (x+3)^3$
 $y = ($

13)
$$g(x) = \frac{7x+18}{2}$$
 14) $f(x) = x+3$

15)
$$f(x) = -x + 3$$
 16) $f(x) = 4x$

17)
$$h(x) = \frac{3}{-x-2}$$
 f(x) = $-\frac{3}{-x-3} - 2$ 18)

