Name:
PCH Intro to Modeling with Functions

Date: \qquad
Ms. Loughran

1. My dachshund, Daisie, needs a place to play. I purchased 14 feet of fencing to use to make her an enclosed rectangular play area. Express the area as a function of a single variable.

$$
\begin{aligned}
& A=1 w \\
& A(x)=x(7-x) \\
& A(x)=7 x-x^{2}, \quad 0<x<7
\end{aligned}
$$

$$
\frac{x}{x-2 x} \begin{aligned}
& x=\text { length } \\
& 7-x=\text { width }
\end{aligned}
$$

2. Now that Daisie has a place to play, she needs to have a place to keep her toys. I want to make an open-top box so that she can reach in and get the toys out herself. I want to use a 72 -by- 28 inch sheet of tin to make this box. I will cut congruent squares of side length x from the corners of the sheet of tin and bend up the sides to form this box. Express the volume of this box as a function of x.

Visual for creating an open top box from a flat piece of tin (paper, cardboard, etc...) by cutting congruent squares of side \boldsymbol{x} from each corner.

* Similar Δs

3. The vertices of a right triangle are $(0,0),(x, 0)$, and $(0, y)$. If $(6,2)$ lies on the hypotenuse of the triangle, express the area of the triangle as a function of x.

4. A right triangle has one vertex on the graph of $y=7-x^{2}$, where $x>0$ at (x, y), another at the origin, and the third on the positive x-axis at $(x, 0)$. Express the area of the triangle as function of x.
(Ky to Pratira Section of Grometric Apprachen) Homework 11-1

(1) $|x| \leq 7 \quad x$'s distonce foom 0 is ≤ 7
(a) $|t| \geq 5$ 迷 distone form $0 \quad 1 \geqslant 5$

3) $|y-5|=3 \quad$ y's distence hom 5 is 3

4) $|t-3|<4 \quad$ t's distance form 3 is <4

5) $\left\lvert\, \begin{aligned} & |5-y|>3 \\ & |y-5|>3\end{aligned} \quad\right.$ y's distance forn 5 is >3

$|x+8| \geqslant 3 \quad$ x's distanc hom -8 is $\geqslant 3$

$$
(-\infty,-11] \cup
$$

7) $|x+1| \leq 5 \quad x^{\prime}$ distance horm -1 is ≤ 5

8)

$$
\begin{aligned}
& |3 x-7| \leq 4 \\
& 3|x-7 / 3| \leq 4 \\
& |x-7 / 3| \leq \frac{4}{3} \quad \text { x's distance form } 7 / 3 \quad 15 \leq \frac{4}{3} \\
& \text { (9) } \begin{aligned}
&|5 y+2| \geqslant 8 . \text { y's dist. form }-2 / 5 \geqslant 8 / 5 \\
& 5|y 2 / 5| \geqslant 8
\end{aligned} \quad \text {. } \\
& \begin{array}{c}
5|y+2 / 5| \geqslant 8 \\
|y+2 / 5| \geqslant \frac{8}{5}
\end{array}
\end{aligned}
$$

(10)

$$
\begin{aligned}
&|4-2 t|>6 \\
&|2 t-4|>6 \\
& 2|t-2|>6 \\
&|t-2|>3
\end{aligned}
$$

t 's distance form $2>3$

(II)

$$
\begin{array}{r}
|4 s+10|<6 \\
4\left|s+\frac{10}{4}\right|<6 \\
|s+10 / 4|<6 / 4 \\
|s+5 / 2|<3 / 2
\end{array}
$$

S's dist . .him $-3 / 2<3 / 2$

$$
\begin{array}{ccc}
0 & 0 & 0 \\
\frac{-4}{-\frac{3}{2}} & \frac{-5}{2} & -1 \\
-\frac{-2}{2}
\end{array}(-y,-1)
$$

(12)

$$
\begin{aligned}
|7 m+11| & =3 \\
7\left|m+\frac{11}{7}\right| & =3 \\
\mid m+11 / 7 & =3 / 7
\end{aligned}
$$

(13)

$$
\begin{aligned}
& 4-5 n \mid \leq 8 \\
& |5 n-4| \leq 8 \\
& 5|n-4 / 5| \leq 8 \\
& |n-4 / 5| \leq 8 / 5
\end{aligned}
$$

(14)

$$
\begin{aligned}
& \left|\frac{1}{2} x-3 / 4\right|<2 \\
& \begin{array}{c}
\frac{1}{2}|x-3 / 2|<2 \\
|x-3 / 2|<4
\end{array} \\
& x^{\prime} \text { s dist. fum } 3 / 2<y
\end{aligned}
$$

(15)

$$
\text { (15) } \begin{aligned}
\left|\frac{1}{3} y+\frac{5}{6}\right| & =1 \\
\text { 3. } \frac{1}{3}\left|y+\frac{5}{2}\right| & =1 \cdot 3 \\
\left|y+\frac{5}{2}\right| & =3
\end{aligned}
$$

y^{\prime} 'sdistanc form $-5 / 2=3$

$$
\left\{-\frac{11}{2}, \frac{1}{2}\right\}
$$

(16)

$$
\begin{gathered}
\left|\frac{x-2}{3}\right|<2 \\
\frac{1}{3}|x-2|<2 \\
|x-2|<6
\end{gathered}
$$

x 's distanke from $2<6$

(ii)

$$
\begin{gathered}
8-|2 x-1| \geqslant 6 \\
-|2 x-1| \geqslant-2 \\
|2 x-1| \leq 2 \\
2\left|x-\frac{1}{2}\right| \leq 2 \\
\left|x-\frac{1}{2}\right| \leq 1
\end{gathered}
$$

x^{\prime} 's distame from $\frac{1}{2} \leq 1$

$$
(-4,8)
$$

(18)

$$
\begin{gathered}
7|x+2|+5>4 \\
7|x+2|>-1 \\
|x+2|>-\frac{1}{7}
\end{gathered}
$$

$|x+2|$ is always postive or zeno
$(-\infty, \infty)$

