Name:
PCH: Rational Zeros and Intermediate Value Theorems

Date: \qquad
Ms.Loughran

Do Now:

1. When a function $f(x)$ is divided by $2 x-3$, the quotient is $3 x^{2}-4 x+2$ and remainder is -7 . Find $f(x)$ in simplest form.

$$
\begin{gathered}
\text { divisor quotient + remainder } \\
f(x)=(2 x-3)\left(3 x^{2}-4 x+2\right)-7 \\
6 x^{3}-8 x^{2}+4 x-9 x^{2}+12 x-6-7 \\
6 x^{3}-17 x^{2}+16 x-6-7 \\
6 x^{3}-17 x^{2}+16 x-13
\end{gathered}
$$

2. Find the remainder when $x^{124}-5 x^{76}+2 x^{45}-3 x+5$ is divided by $x+1$.

$$
\begin{array}{r}
(-1)^{124}-5(-1)^{76}+2(-1)^{45}-3(-1)+5 \\
1-5-2+3+5=2
\end{array}
$$

Rational Zeros Theorem

If the polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ has integer coefficients, then every rational zero of P is of the form

$$
\frac{p}{q}
$$

where p is a factor of the constant coefficient a_{0} and q is a factor of the leading coefficient a_{n}

2

$$
\begin{array}{rrrrr}
1 & -5 & -5 & 23 & 10 \\
& 2 & -6 & -22 & 2 \\
\hline 1 & -3 & -11 & 1 & 12
\end{array}
$$

5	0	-25	-10	
1	0	-5	-2	0

Classwork:

1. Let $P(x)=x^{4}-5 x^{3}-5 x^{2}+23 x+10$. Find the zeros of $P(x)$. possible rational 2 cons: $p r z=\frac{ \pm 1, \pm 2, \pm 5, \pm 10}{ \pm 1}= \pm 1, \pm 2, \pm 5, \pm 10$

$$
\begin{aligned}
& P(1)=1-5-5+23+70 \neq 0 \\
& P(-1)=1+5-5-23+10 \neq 0 \\
& \left.(x+2)(x-5)\binom{2}{2}-2 x-1\right)=0 \\
& \left.x=-2|x=5| \begin{array}{l}
x^{2}-2 x-1=0 \\
\left.x^{2}-2 x+1\right)=1+1 \\
(x)=1
\end{array}\right)
\end{aligned}
$$

$$
\{-2,5,1 \pm \sqrt{2}\}
$$

2. Factor the polynomial $P(x)=2 x^{3}+x^{2}-13 x+6$

$$
\begin{aligned}
& \text { prz: } \frac{ \pm 1, \pm 2, \pm 3, \pm 6}{ \pm 1, \pm 2}= \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2} \\
& P(1)=2+1-13+6 \neq 0 \\
& P(-1)=-2+1+13+6 \neq 0
\end{aligned}
$$

2)

$$
\begin{aligned}
& (x-2)\left(2 x^{2}+5 x-3\right) \\
& (x-2)(2 x-1 \quad(x+3)
\end{aligned}
$$

For 3-8, find the complete factorization and all zeros of the following polynomials using the information given.
3. $P(x)=2 x^{5}-5 x^{4}+x^{3}+4 x^{2}-4 x$

Intermediate Value Theorem
Let a and b be real numbers such that $a<b$. If f is a polynomial function such that $f(a) \neq f(b)$, then in the interval $[a, b], f$ takes on every value between $f(a)$ and $f(b)$.

This theorem helps locate the real zeros of a polynomial function. If $f(a)$ is positive real number, and another $f(b)$ is a negative number and $a<b$, you can conclude that the function has at least one real zero between these two variables

IV
9. Use the Intermediate Value Theorem to prove that a zero exists on the interval [1,2] of the function $f(x)=-x^{3}+2 x^{2}+9 x-11$.

$$
\begin{aligned}
& f(1)=-1+2+9-11=-1 \\
& f(2)=-8+8+18-11=7
\end{aligned}
$$

By the lIT if

$$
f(1)<0 \text { and }
$$

$$
f(z)>0 \text { then }
$$

$$
f(x)=0 \text { at some }
$$

pt in the interval
10. Use the Intermediate Value Theorem to prove that $f(x)=x^{3}+x$ takes on the value 9 for some x in $[1,2]$.

$$
\begin{aligned}
& f(1)=2 \\
& f(2)=8+2=10
\end{aligned}
$$

By the IVT sue $f(1)=2$ and $f(2)=10$
$f(x)=9$ at sons pt in that interval.
11. Selected value of the continuous function f are shown in the table below. Is the following statement true or false?

$$
f(x)=2 \text { has at least } 1 \text { solution in the interval }[0,7] .
$$

12. Selected value of the continuous function f are shown in the table below. Is the following statement true or false?

$$
f(x)=5 \text { has at least } 1 \text { solution in the interval }[-3,2] .
$$

x	$f(x)$
-3	-2
0	10
1	11
2	8

True
If $f(-3)=-2$ and
$f(0)=10$ then by
the IVT $f(x)=5$
in the interval $[-3,0]$

THEOREM: $f(x)$ is a polynomial function of degree ≥ 1 and $x-c$ is a factor of f if and only if $f(c)=0$ (ie. c is a zero of f).

EXAMPLE: If $f(x)=2 x-6$ and 3 is a zero of $f(x)$, then ... is a factor of $f(x)$.

EXAMPLE: If $x+1$ is a factor of $f(x)$, then \qquad is a zero of $f(x)$.

EXAMPLE: If $f(x)=(x-3)(x+4)(2 x-1)$, then the zeros of $f(x)$ are: \qquad .

EXAMPLE: If $f(4)=0$, then a factor of f is: \qquad .

EXAMPLE: If $3 x-1$ is a factor of $f(x)$, then $f(\quad)=0$.
Note: The complete factorization of a polynomial will include factors with ONLY integral coefficients.
PROBLEMS (2) $2^{5}-32=0$

1. Show 2 ways that $y-1$ is a factor of $y^{3}-3 y^{2}+3 y-1$.
2. Show 2 ways that $x-2$ is a factor of $x^{5}-32$.

3. Factors of $x^{3}+x^{2}-4 x-4$ are $(x-2),(x+2)$ and $(x+1)$. What are the zeros of the polynomeal?
4. Given that the zeros of $x^{3}-6 x^{2}+11 x-6$ are 1,2 , and 3 . What are the factors of the polynomial? Check by multiplication.

$$
(x-1)(x-2)(x-3)
$$

5. If $f(x)=x^{3}-x^{2}+k x-12$, find k so that $f(x)$ is exactly divisible by $x+3$.
6. If $f(x)=4 x^{3}-2 x^{2}-3 x+k$, find k so that $f(x)$ is exactly divisible by $x-2$. $K=-18$
7. If $f(x)=a x^{5}+a x^{4}+13 x^{3}-11 x^{2}-10 x-a$, find $f(1)$ if $f(-1)=0$.
8. Show that -3 is a zero of $f(x)=x^{3}+7 x^{2}+7 x-15$.
9. Find all zeros of $f(x)=3 x^{3}-4 x^{2}-9 x+10$ given that one zero is 1. $\quad \begin{gathered}\text { Syn } \\ \text { Show } \\ \text { ru maid iso }\end{gathered}$
10. One root of $x^{3}+8 x^{2}+11 x-20=0$ is -5 . Find the complete set of solutions of this equation.
11. Show that $(x+1)$ is a factor of $x^{3}-2 x^{2}+3=0$. Use this information to find the solution set of this equation.
12. One zero of $4 x^{3}-11 x^{2}+5 x+2$ is $-1 / 4$. Find the complete factorization of this polynomial and find the remaining two zeros.

$$
(4 x+1)(x-1)(x-2)
$$

remaining zeros: 1,2

MULTIPLE ZEROS/ROOIS

$$
x= \pm \sqrt{3}
$$

13. a) Show that $3 x+1$ is a multiple factor of $p(x)=27 x^{5}-18 x^{3}-8 x^{2}-x$.
b) What is the multiplicity of the zero $-\frac{1}{3}$?
c) Find all solutions of $p(x)=0$.
14. a) Prove that 1 is a multiple root of $x^{5}-3 x^{4}+8 x^{2}-9 x+3=0$ and find its multiplicity.
b) Use this information to solve the equation in part a). $\{1($ multipliuty of 3$), \pm \sqrt{3}\}$
15. The zeros of a polynomial $g(x)$ are $3,-2$, and 1 , where 1 has a multiplicity of two.
a) What is the degree of $g(x)$?
b) What are the factors of $g(x)$?
c) Find $g(x)$ in expanded form.
16. Given that i is a multiple root of $x^{4}+2 x^{2}+1=0$. Find the complete solution set.
17. If a polynomial equation of degree 5 has a solution set of $\{1\}$, what is the multiplicity of this root?
18. It is given that 1 is a multiple root of $x^{5}-3 x^{4}-6 x^{3}+26 x^{2}-27 x+9=0$. Find all roots.
$i($ multiplicity of 3$), \pm 3$
19. Solve $8 x^{5}-12 x^{4}+38 x^{3}-49 x^{2}+24 x-4=0$ if $\frac{1}{2}$ is a multiple root.

NUMBER OF ROOTS - CONJUGATE PAIRS
20. One zero of a quadratic polynomial function with real coefficients is $3+4 i$. What is the other zero?
21. If a cubic polynomial function with real coefficients has exactly one real zero, how many non-real zeros does it have?
22. Can a polynomial equation with real coefficients of odd degree have all imaginary roots? Explain. No If the coefficients of the polynomial are real, then imaginary roots come in conjugate
23. Find the complete solution set of $x^{4}-2 x^{3}+3 x^{2}-8 x-4=0$ if due root is $2 i$.
24. Find the complete solution set of $x^{4}-4 x^{3}+6 x^{2}-4 x-15=0$ if one root is $1-2 i$.
25. Find the roots of $f(x)=x^{4}-3 x^{2}-28$.

$$
\{1 \pm 2 i, 3,-1\}
$$

26. One zero of $f(x)=x^{3}-x^{2}-5 x+21$ is $2+i \sqrt{3}$. Find the remaining zeros.

$$
\begin{gathered}
1,0-9 \quad 0 \\
(x-1)^{3}\left(x^{2}-9\right)=0 \\
x=1, x= \pm 3
\end{gathered}
$$

(24)

$$
\begin{gathered}
1+2 i \\
\text { sum }=(1-2 i)+(1+2 i)=2 \\
\text { product }=\left(1-2 i x(1+2 i)=1-4 i^{2}=5\right. \\
x^{2}-\text { sum } x+\text { product } \\
x^{2}-2 x+5
\end{gathered}
$$

2
-5 $\frac{\left.\begin{array}{rrrrr}1 & -4 & 6 & -4 & -15 \\ 2 & -4 & -6 & \\ 1 & -2 & -3 & 0 & 0\end{array}\right]}{}$

$$
\begin{aligned}
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x=3, x=-1, \quad x=1 \pm 2 i
\end{aligned}
$$

