Name:
PCH: Vertical and Horizontal Asymptotes

Date:
Ms. Loughran

Do Now:

1. Graph $y=\frac{x^{4}-2 x^{2}+1}{x^{2}-1}$. State the domain, range and coordinates of any holes), x - and

$$
\begin{aligned}
& y \text {-intercepts. } \\
& y=\frac{\left(x^{2}-1\right)\left(x^{2}-1\right)}{x^{2}-1}=x^{2}-1 \int^{\downarrow 1} \\
& \text { holes: }(1,0),(-1,0)
\end{aligned}
$$

A vertical asymptote is a vertical line that guides the graph of the function but is not part of it. It can never be crossed by the graph because it occurs at the x-value that is not in the domain of the function

A horizontal asymptote describes a function's "end behavior." That means how the graph behaves as x approaches $\pm \infty$.

Higher powered exponents
really drive the end
behavior of the graph.
Examples:

1. What is the end behavior of $y=\frac{x^{3}+5}{2 x^{3}+x^{2}+1}$?

$$
\begin{aligned}
& y=\frac{\frac{x^{3}}{x^{3}}+\frac{5}{x^{3}}}{\frac{2 x^{3}}{x^{3}}+\frac{x^{2}}{x^{3}}+\frac{1}{x^{3}}}= \frac{1+\frac{5}{x^{3}}}{2+\frac{1}{x}+\frac{1}{x^{3}}} \\
& \text { as } x \rightarrow \pm \infty
\end{aligned} \quad \begin{aligned}
& y=\frac{1+0}{2+0+0}=\frac{1}{2}
\end{aligned}
$$

$E B: y=\frac{1}{2} \quad$ (horizontal)
2. What is the end behavior of $y=\frac{2 x-3}{x^{2}+2}$?

$$
\begin{aligned}
& y=\frac{\frac{2 x}{x^{2}}-\frac{3}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{2}{x^{2}}} \\
& y=\frac{\frac{2}{x}-\frac{3}{x^{2}}}{1+\frac{2}{x^{2}}} \\
& \text { as } x \rightarrow \pm \infty \quad y=\frac{0-0}{1+0}=\frac{0}{1} \quad 0
\end{aligned}
$$

3. What is the end behavior of $y=\frac{x^{2}-4}{x^{2}-2 x+3}$?

$$
\begin{aligned}
& y=\frac{\frac{x^{2}}{x^{2}}-\frac{4}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{2 x}{x^{2}}}+\frac{3}{x^{2}} \\
& y=\frac{1-\frac{4}{x^{2}}}{1-\frac{2}{x}+\frac{3}{x^{2}}} \quad \text { as } x \rightarrow \pm \infty \quad y=\frac{1-0}{1-0+0}=\frac{1}{1}=1
\end{aligned}
$$

$E B: y=1$ (horizontal)
4. What is the end behavior of $y=\frac{x^{2}}{x+1}$?

$$
\begin{aligned}
& y=\frac{\frac{x^{2}}{x^{2}}}{\frac{x}{x^{2}}+\frac{1}{x^{2}}} \\
& \text { as } x \rightarrow \pm \infty \\
& y=\frac{1}{\frac{1}{x}+\left(\frac{1}{x^{2}}\right)} 0 \quad \text { ER: } \frac{1}{x}=x \text { horizontal asymptote }
\end{aligned}
$$

Let r be the REDUCED rational function

$$
r(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}
$$

1. The vertical asymptotes of r are the lines $x=a$, where a is a zero of the denominator.

In other words: is find vertical asymptotes, we set the denominator of the REDUCED function equal to 0 and solve.
2. (a) If $n<m$, then r has a horizontal asymptote of $y=0$

In other words: if the degree of the numerator is less than the degree of the denominator, then the horizontal asymptote is $y=0$.
(b) If $n=m$, then r has a horizontal asymptote of $y=$ ratio of the leading coefficients

In other words: If the degree of the numerator = the degree of the denominator, then the horizontal asymptote is $y=$ ratio of the reading wefficients.
(c) If $n>m$, then r has. no horizontal asymptote

In other words: if the degree of the numerator \rightarrow the degree of the denominator, then there is no horizontal asymptote.

Graphs can intersect horizontal asymptotes, but can never intersect a vertical asymptote. So you must always check if a graph intersects its horizontal asymptote.

Homework 12-08

Sketch the graph of each of the following. State the domain, range, and any intercepts.

1. $y=\frac{x^{2}-9}{x+3}$
2. $y=\frac{x^{2}-x-6}{x-3}$
3. $y=\frac{x^{2}-16}{x+4}$

$$
y=\frac{(x-3)(x+3)}{x+3}=x-3
$$

$$
\begin{aligned}
& y=\frac{(x-3)(x+2)}{x-3}=x+2 \\
& \text { hov: }(3,5) \\
& \left\{\begin{array}{l}
x \mid x \neq 3\} \\
\therefore\{y \mid y \neq 5\} \\
x=1 n t:(-2,0)
\end{array}\right. \\
& \substack{x-\ln !\\
0=2 x+2 \\
-2=x}
\end{aligned}
$$

49-52 - Graph the functions on the same screen using the given viewing rectangle. How is each graph related to the graph in part (a)?
49. Viewing rectangle $[-8,8]$ by $[-2,8]$
(a) $y=\sqrt[4]{x}$
(b) $y=\sqrt[4]{x+5}$
(c) $y=2 \sqrt[4]{x+5}$
(d) $y=4+2 \sqrt[4]{x+5}$
50. Viewing rectangle $[-8,8]$ by $[-6,6]$
(a) $y=|x|$
(b) $y=-|x|$
(c) $y=-3|x|$
(d) $y=-3|x-5|$
51. Viewing rectangle $[-4,6]$ by $[-4,4]$
(a) $y=x^{6}$
(b) $y=\frac{1}{3} x^{6}$
(c) $y=-\frac{1}{3} x^{6}$
(d) $y=-\frac{1}{3}(x-4)^{6}$
52. Viewing rectangle $[-6,6]$ by $[-4,4]$
(a) $y=\frac{1}{\sqrt{x}}$
(b) $y=\frac{1}{\sqrt{x+3}}$
(c) $y=\frac{1}{2 \sqrt{x+3}}$
(d) $y=\frac{1}{2 \sqrt{x+3}}-3$
53. The graph of g is given. Use it to graph each of the following functions.
(a) $y=g(2 x)$
(b) $y=g\left(\frac{1}{2} x\right)$

54. The graph of h is given. Use it to graph each of the following functions.
(a) $y=h(3 x)$
(b) $y=h\left(\frac{1}{3} x\right)$

55-56 The graph of a function defined for $x \geq 0$ is given. Complete the graph for $x<0$ to make
(a) an even function
(b) an odd function
55.

56.

57-58 ■ Use the graph of $f(x)=\llbracket x \rrbracket$ described on pages 162-163 to graph the indicated function.
57. $y=\|2 x\|$
58. $y=\llbracket \frac{1}{4} x \rrbracket$
59. If $f(x)=\sqrt{2 x-x^{2}}$, graph the following functions in the viewing rectangle $[-5,5]$ by $[-4,4]$. How is each graph related to the graph in part (a)?
(a) $y=f(x)$
(b) $y=f(2 x)$
(c) $y=f\left(\frac{1}{2} x\right)$
60. If $f(x)=\sqrt{2 x-x^{2}}$, graph the following functions in the viewing rectangle $[-5,5]$ by $[-4,4]$. How is each graph related to the graph in part (a)?
(a) $y=f(x)$
(b) $y=f(-x)$
(c) $y=-f(-x)$
(d) $y=f(-2 x)$
(e) $y=f\left(-\frac{1}{2} x\right)$

61-68 Determine whether the function f is even, odd, or neither. If f is even or odd, use symmetry to sketch its graph.
61. $f(x)=x^{-2} \quad \ell V e n$
62. $f(x)=x^{-3}$
odd
63. $f(x)=x^{2}+x$ neither
64. $f(x)=x^{4}-4 x^{2}$ 6ven
65. $f(x)=x^{3}-x$ odd
66. $f(x)=3 x^{3}+2 x^{2}+1$ nether
67. $f(x)=1-\sqrt[3]{x}$ nether
68. $f(x)=x+\frac{1}{x}$ idd
69. The graphs of $f(x)=x^{2}-4$ and $g(x)=\left|x^{2}-4\right|$ are shown. Explain how the graph of g;, stained from the graph of f.

$g(x)=\left|x^{2}-4\right|$

$f(x)=x^{2}-4$

