Name:	Date:
PCH: Vertical and Horizontal Asymptotes	Ms. Loughran

Do Now:

A vertical asymptote is a vertical line that guides the graph of the function but is not part of it. It can never be crossed by the graph because it occurs at the x-value that is not in the domain of the function

A horizontal asymptote describes a function's "end behavior." That means how the graph behaves as *x* approaches $\pm \infty$.

Examples:

1. What is the end behavior of
$$y = \frac{x^3 + 5}{2x^3 + x^2 + 1}$$
?

$$\begin{aligned}
 & y = \frac{\frac{\chi^{3}}{\chi^{3}} + \frac{5}{\chi^{3}}}{\frac{2\chi^{3}}{\chi^{3}} + \frac{\chi^{2}}{\chi^{3}} + \frac{1}{\chi^{3}}} = \frac{1 + \frac{5}{\chi^{3}}}{2 + \frac{1}{\chi} + \frac{1}{\chi^{3}}} \\
 & s \chi \to \pm \infty \\
 & y = \frac{1 + 0}{2 + 0 + 0} = \frac{1}{2}
 \end{aligned}$$

$$EB: \quad y = \frac{1}{2} \quad (horizontal)$$

2. What is the end behavior of $y = \frac{2x-3}{x^2+2}$?

$$\begin{aligned} y &= \frac{2x}{x^2} - \frac{3}{x^2} \\ y &= \frac{2}{x^2 + \frac{2}{x^2}} \\ y &= \frac{2}{x^2 + \frac{2}{x^2}} \\ y &= \frac{2}{x^2 + \frac{2}{x^2}} \\ \frac{4}{x^2 + \frac{2}{x^2}} \\ \frac{4}{x^2 + \frac{2}{x^2}} \\ \frac{4}{x^2 - 2x + 3}? \end{aligned}$$

$$\begin{aligned} y &= \frac{x^2 - 4}{x^2 - 2x + 3}? \\ y &= \frac{1}{x^2} - \frac{4}{x^2} \\ \frac{2}{x^2} - \frac{4}{x^2} \\ \frac{2}{x^2} - \frac{4}{x^2} \\ \frac{2}{x^2} + \frac{2}{x^2} \\ y &= \frac{1 - \frac{4}{x^2}}{1 - \frac{2}{x} + \frac{2}{x^2}} \\ y &= \frac{1 - \frac{4}{x^2}}{1 - \frac{2}{x} + \frac{2}{x^2}} \end{aligned}$$

$$\begin{aligned} y &= \frac{1 - \frac{4}{x^2}}{1 - \frac{2}{x} + \frac{2}{x^2}} \\ z &= \frac{1 - 4}{x^2 + \frac{2}{x^2}} \end{aligned}$$

$$4. What is the end behavior of $y = \frac{x^2}{x + 1}? \end{aligned}$$$

4. What x+1

$$y = \frac{\frac{x^{2}}{x^{2}}}{\frac{x}{x^{2}} + \frac{L}{x^{2}}}$$

$$\begin{array}{l} u = \frac{1}{x} + \frac{1}{x} \\ u = \frac{1}{x} + \frac{1}{x} \\ u = \frac{1}{x} \\ u =$$

Let *r* be the **REDUCED** rational function

$$r(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

1. The vertical asymptotes of r are the lines x = a, where a is a zero of the denominator.

2. (a) If n < m, then r has a horizontal asymptote of y = 0

In other words: if the degree of the numerator is less than the degree of the denominator, then the horizontal asymptote is y = 0.

(b) If n = m, then r has a horizontal asymptote of y = ratio of the leading coefficientsIn other words: If the degree of the numerator = the degree ofthe denominator, then the horizontal asymptote is<math>y = ratio of the leading coefficients.

(c) If n>m, then r has. no horizontal asymptote In other words: If the degree of the numerator > the degree of the demonstrator, then there is no honizontal asymptote.

Graphs can intersect horizontal asymptotes, but can never intersect a vertical asymptote. So you must always check if a graph intersects its horizontal asymptote.

	Function	Hole(s)	Vertical Asymptote(s)	Horizontal Asymptote Does graph intersect HA?	x- intercept(s)	y-intercept	
RF	$y = \frac{1-x}{x+3}$	NONE	X+3 =0 X=-3	$ \underbrace{y = -1}_{I = -1} = -1 $ $ \underbrace{y = -1}_{X+3} = -1 $ $ \underbrace{ND}_{I-X = -X-3} $ $ \underbrace{I \neq -3}_{I \neq -3} $	$\frac{1-x}{x+3} = 0$ $1-x = 0$ $x = 1$ $(1,0)$	$y = \frac{1 - 0}{0 + 3} = \frac{1}{3}$ $(0, \frac{1}{3})$	
y= ⊥ X+2	$y = \frac{x - 2}{x^2 - 4}$ (x+2)(x-x)	(2, 4)	X+2 = 0 X = -2	$y = 0$ $\frac{1}{x+2} = 0$ $1 \neq 0 \text{ND}$	$\frac{1}{x+2} = 0$ $1 \neq 0$ hone	$y=\frac{1}{0+2}$ $(0, \frac{1}{2})$	
y=X-S	$y = \frac{(x-5)(x+4)}{x^2 - x - 20}$	(-4 ₁ -9)	none	none	y=x-5 0=x-5 5 =x (5,0)	y= 0-5 y= -5 (0, -5)	
	$y = \frac{(x-5)(x+y)}{x+1}$	none	X+I = D X = -1	none	0 = ^(x-s) (x+4) X+1 0=(x-s)(x+4) (5,0),(-410)	y= <u>0-0-20</u> 0+1 (0,-20)	=-20
	$y = \frac{2x^3}{x^3 + x}$						•
	$y = \frac{x-1}{x^2 - 4}$						

Homework 12-08

Sketch the graph of each of the following. State the domain, range, and any intercepts.

49–52 Graph the functions on the same screen using the given viewing rectangle. How is each graph related to the graph in part (a)?

- 49. Viewing rectangle [-8, 8] by [-2, 8](a) $y = \sqrt[4]{x}$ (b) $y = \sqrt[4]{x+5}$ (c) $y = 2\sqrt[4]{x+5}$ (d) $y = 4 + 2\sqrt[4]{x+5}$ 50. Viewing rectangle [-8, 8] by [-6, 6]
 - (a) y = |x| (b) y = -|x|
 - (c) y = -3|x| (d) y = -3|x-5|
- 51. Viewing rectangle [-4, 6] by [-4, 4](a) $y = x^{6}$ (b) $y = \frac{1}{2}x^{6}$

(b)
$$y = \frac{1}{3}x^{6}$$

(c) $y = -\frac{1}{3}x^{6}$
(d) $y = -\frac{1}{3}(x-4)^{6}$

52. Viewing rectangle [-6, 6] by [-4, 4]

(a)
$$y = \frac{1}{\sqrt{x}}$$
 (b) $y = \frac{1}{\sqrt{x+3}}$
(c) $y = \frac{1}{2\sqrt{x+3}}$ (d) $y = \frac{1}{2\sqrt{x+3}} - 3$

53. The graph of g is given. Use it to graph each of the following functions.

- 54. The graph of h is given. Use it to graph each of the following functions.
 - (a) y = h(3x) (b) $y = h(\frac{1}{3}x)$

55–56 The graph of a function defined for $x \ge 0$ is given. Complete the graph for x < 0 to make

- (a) an even function
- (b) an odd function

57-58 • Use the graph of f(x) = [x] described on pages 162-163 to graph the indicated function.

57.
$$y = \begin{bmatrix} 2x \end{bmatrix}$$
 58. $y = \begin{bmatrix} \frac{1}{4}x \end{bmatrix}$

- 59. If $f(x) = \sqrt{2x x^2}$, graph the following functions in the viewing rectangle [-5, 5] by [-4, 4]. How is each graph related to the graph in part (a)? (a) y = f(x) (b) y = f(2x) (c) $y = f(\frac{1}{2}x)$
- 60. If $f(x) = \sqrt{2x x^2}$, graph the following functions in the viewing rectangle [-5, 5] by [-4, 4]. How is each graph related to the graph in part (a)?
 - (a) y = f(x) (b) y = f(-x) (c) y = -f(-x)(d) y = f(-2x) (e) $y = f(-\frac{1}{2}x)$

61–68 Determine whether the function f is even, odd, or neither. If f is even or odd, use symmetry to sketch its graph.

- 61. $f(x) = x^{-2}$ (VCN 62. $f(x) = x^{-3}$ odd 63. $f(x) = x^2 + x$ muthur 64. $f(x) = x^4 - 4x^2$ can 65. $f(x) = x^3 - x$ odd 66. $f(x) = 3x^3 + 2x^2 + 1$ neither 67. $f(x) = 1 - \sqrt[3]{x}$ muthur 68. $f(x) = x + \frac{1}{x}$ odd
- 69. The graphs of $f(x) = x^2 4$ and $g(x) = |x^2 4|$ are shown. Explain how the graph of g is obtained from the graph of f.

