Date: ____ Ms. Loughran

PCH: General Solutions to Trig Equations

Do Now:

Find all solutions of the equation in the interval $(0, 2\pi]$.

1.
$$\sin x = 1$$

2.
$$\cos^2 x = \frac{3}{4}$$

3.
$$\sec x - 2 = 0$$

Now let's write what is called the general solutions for questions 1-3.

Classwork:

Find all solutions of each equation.

$$1. \quad \tan 2x = \frac{1}{\sqrt{3}}$$

2.
$$\cos \frac{x}{2} + 1 = 0$$

3.
$$2\sin^2 x - 1 = 0$$

4.
$$4\cos^2 x - 1 = 0$$

5.
$$\sin^2 x = 2\sin x + 3$$

6.
$$\sin^2 x - \cos^2 x = 0$$

From your textbook:

Exercises

1–40 ■ Find all solutions of the equation.

1.
$$\cos x + 1 = 0$$

2.
$$\sin x + 1 = 0$$

3.
$$2 \sin x - 1 = 0$$

4.
$$\sqrt{2} \cos x - 1 = 0$$

5.
$$\sqrt{3} \tan x + 1 = 0$$

6.
$$\cot x + 1 = 0$$

7.
$$4\cos^2 x - 1 = 0$$

8.
$$2\cos^2 x - 1 = 0$$

10. $\csc^2 x - 4 = 0$

9.
$$\sec^2 x - 2 = 0$$

11.
$$3 \csc^2 x - 4 = 0$$

12.
$$1 - \tan^2 x = 0$$

13.
$$\cos x (2 \sin x + 1) = 0$$

14.
$$\sec x (2\cos x - \sqrt{2}) = 0$$

15.
$$(\tan x + \sqrt{3})(\cos x + 2) = 0$$

16.
$$(2\cos x + \sqrt{3})(2\sin x - 1) = 0$$

17.
$$\cos x \sin x - 2 \cos x = 0$$
 18. $\tan x \sin x + \sin x = 0$

18.
$$\tan x \sin x + \sin x = 0$$

19.
$$4\cos^2 x - 4\cos x + 1 = 0$$
 20. $2\sin^2 x - \sin x - 1 = 0$

20.
$$2 \sin^2 x - \sin x - 1 = 0$$

21.
$$\sin^2 x = 2 \sin x + 3$$

22.
$$3 \tan^3 x = \tan x$$

23.
$$\sin^2 x = 4 - 2\cos^2 x$$

24.
$$2\cos^2 x + \sin x = 1$$

25.
$$2 \sin 3x + 1 = 0$$

26.
$$2 \cos 2x + 1 = 0$$

27.
$$\sec 4x - 2 = 0$$

28.
$$\sqrt{3} \tan 3x + 1 = 0$$

29.
$$\sqrt{3} \sin 2x = \cos 2x$$

30.
$$\cos 3x = \sin 3x$$

31.
$$\cos \frac{x}{2} - 1 = 0$$
 32. $2 \sin \frac{x}{3} + \sqrt{3} = 0$

33.
$$\tan \frac{x}{4} + \sqrt{3} = 0$$
 34. $\sec \frac{x}{2} = \cos \frac{x}{2}$

34
$$\sec \frac{x}{x} = \csc \frac{x}{x}$$

35.
$$tan^5x - 9 tan x = 0$$

36.
$$3 \tan^3 x - 3 \tan^2 x - \tan x + 1 = 0$$

37.
$$4 \sin x \cos x + 2 \sin x - 2 \cos x - 1 = 0$$

38.
$$\sin 2x = 2 \tan 2x$$

39.
$$\cos^2 2x - \sin^2 2x = 0$$

40.
$$\sec x - \tan x = \cos x$$

41-48 Find all solutions of the equation in the interval $[0, 2\pi)$.

41.
$$2\cos 3x = 1$$

42.
$$3 \csc^2 x = 4$$

43.
$$2 \sin x \tan x - \tan x = 1 - 2 \sin x$$

44.
$$\sec x \tan x - \cos x \cot x = \sin x$$

45.
$$\tan x - 3 \cot x = 0$$

46.
$$2 \sin^2 x - \cos x = 1$$

47.
$$\tan 3x + 1 = \sec 3x$$

48.
$$3 \sec^2 x + 4 \cos^2 x = 7$$

49-56 ■ (a) Find all solutions of the equation. (b) Use a calculator to solve the equation in the interval $[0, 2\pi)$, correct to five decimal places.

49.
$$\cos x = 0.4$$

50.
$$2 \tan x = 13$$

51.
$$\sec x - 5 = 0$$

52.
$$3 \sin x = 7 \cos x$$

53.
$$5 \sin^2 x - 1 = 0$$

54.
$$2 \sin 2x - \cos x = 0$$

55.
$$3 \sin^2 x - 7 \sin x + 2 = 0$$

56.
$$\tan^4 x - 13 \tan^2 x + 36 = 0$$

57-60 Graph f and g on the same axes, and find their points of intersection.

57.
$$f(x) = 3\cos x + 1$$
, $g(x) = \cos x - 1$

58.
$$f(x) = \sin 2x$$
, $g(x) = 2\sin 2x + 1$

59.
$$f(x) = \tan x$$
, $g(x) = \sqrt{3}$

60.
$$f(x) = \sin x - 1$$
, $g(x) = \cos x$

61-64 ■ Use an addition or subtraction formula to simplify the equation. Then find all solutions in the interval $[0, 2\pi)$.

61.
$$\cos x \cos 3x - \sin x \sin 3x = 0$$

62.
$$\cos x \cos 2x + \sin x \sin 2x = \frac{1}{2}$$

63.
$$\sin 2x \cos x + \cos 2x \sin x = \sqrt{3}/2$$

64.
$$\sin 3x \cos x - \cos 3x \sin x = 0$$

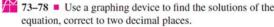
65-68 ■ Use a double- or half-angle formula to solve the equation in the interval $[0, 2\pi)$.

65.
$$\sin 2x + \cos x = 0$$

66.
$$\tan \frac{x}{2} - \sin x = 0$$

67.
$$\cos 2x + \cos x = 2$$

68.
$$\tan x + \cot x = 4 \sin 2x$$


69-72 ■ Solve the equation by first using a sum-to-product formula.

69.
$$\sin x + \sin 3x = 0$$

70.
$$\cos 5x - \cos 7x = 0$$

71.
$$\cos 4x + \cos 2x = \cos x$$

72.
$$\sin 5x - \sin 3x = \cos 4x$$

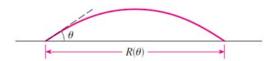
1 places.
$$74. \cos x = \frac{x}{3}$$

75.
$$2^{\sin x} = x$$

73. $\sin 2x = x$

76.
$$\sin x = x^3$$

77.
$$\frac{\cos x}{1 + x^2} = x$$


77.
$$\frac{\cos x}{1+x^2} = x^2$$
 78. $\cos x = \frac{1}{2}(e^x + e^{-x})$

Applications

79. Range of a Projectile If a projectile is fired with velocity v_0 at an angle θ , then its range, the horizontal distance it travels (in feet), is modeled by the function

$$R(\theta) = \frac{v_0^2 \sin 2\theta}{32}$$

(See page 818.) If $v_0 = 2200$ ft/s, what angle (in degrees) should be chosen for the projectile to hit a target on the ground 5000 ft away?

80. Damped Vibrations The displacement of a spring vibrating in damped harmonic motion is given by

$$y = 4e^{-3t} \sin 2\pi t$$

Find the times when the spring is at its equilibrium position (y = 0).

81. Refraction of Light It has been observed since ancient times that light refracts or "bends" as it travels from one medium to another (from air to water, for example). If v_1 is