Date:

Name: _____ PCH: Polynomials Practice

1. If
$$f(x) = 6x^3 - 5x^2 - 17x + 6$$
, find $f\left(\frac{1}{2}\right)$.

2. If
$$f(x) = 2x^3 + 5x^2 + 5px + 6$$
 and $f(2) = 12$, find *p*.

3. Find the quotient and remainder when $3x^3 + x^2 - 6x + 3$ is divided by 3x + 1.

4. If f is a polynomial where f(3) = 0 and f(-1) = 0, what are two linear factors of f?

5. Find the zeros of:

(a)
$$f(x) = x(x+2)(3x-4)$$
 (b) $g(x) = 3x^2 - 9x$

(c)
$$h(x) = 3x^2 - 9x + 7$$
 (d) $j(x) = x^2 + 9$

6. If x + 3 is a factor of $f(x) = x^3 + 4x^2 + x - 6$, find the complete factorization of f(x).

- 7. Given: $g(x) = 2x^4 7x^3 6x^2 + 44x 40$
 - (a) Find the multiplicity of the zero 2.
 - (b) Factor g(x) completely using integral factors.
 - (c) Find the roots of g(x) = 0.

8. One root of $x^3 + 4x^2 - 4x - 1 = 0$ is 1. Find the other roots.

9. F(x) is a polynomial function with rational coefficients. What is the minimum degree of F(x) if $\sqrt{2}$, 1, $1 - \sqrt{2}$ and 3 are zeros of F(x)?

10. True of False: If 2i is a root of $x^2 - ix + 2 = 0$, then -2i is also a root.

11. Find a polynomial P(x) in expanded form with integral coefficients if its zeros are: $\left\{-1,\pm i,\frac{3}{4} (\text{multiplicity of 2})\right\}.$

12. Find the remainder when $x^{125} - 5x^{77} + 2x^{46} - 3x + 5$ is divided by x + 1.