

$\frac{450}{x}$	- 4 - 0.10	0x < 0	Subtract	54	
450 -	$\frac{-4x - 0.10}{x}$	$\frac{x^2}{2} < 0$	Common denominator		
450	$\frac{0-40x-x}{x}$	$\frac{x^2}{2} < 0$	Multiply by 10		
(90	(50-x)	$\frac{x}{2} < 0$	Factor numerator		
		90	() 5	0
Sign of $90 + x$	_	+		+	+
Sign of $50 - x$	+	+		+	—
Sign of <i>x</i>	_	_		+	+
Sign of $\frac{(90 + x)(50 - x)}{x}$	- +	_		+	_

The sign diagram shows that the solution of the inequality is $(-90, 0) \cup (50, \infty)$. Because we cannot have a negative number of students, it follows that the group must have more than 50 students for the total cost per person to be less than \$54.

1.7 Exercises

1–6 Let $S = \{-2, -1, 0, \frac{1}{2}, 1, \sqrt{2}, 2, 4\}$. Determine which elements of *S* satisfy the inequality.

1.	$3 - 2x \le \frac{1}{2}$	2. $2x - 1 \ge x$
3.	$1 < 2x - 4 \le 7$	4. $-2 \le 3 - x < 2$
5.	$\frac{1}{x} \le \frac{1}{2}$	6. $x^2 + 2 < 4$

7–28 ■ Solve the linear inequality. Express the solution using interval notation and graph the solution set.

7. $2x - 5 > 3$	8. $3x + 11 < 5$
9. $7 - x \ge 5$	10. $5 - 3x \le -16$
11. $2x + 1 < 0$	12. $0 < 5 - 2x$
13. $3x + 11 \le 6x + 8$	14. $6 - x \ge 2x + 9$
15. $\frac{1}{2}x - \frac{2}{3} > 2$	16. $\frac{2}{5}x + 1 < \frac{1}{5} - 2x$
17. $\frac{1}{3}x + 2 < \frac{1}{6}x - 1$	18. $\frac{2}{3} - \frac{1}{2}x \ge \frac{1}{6} + x$
19. $4 - 3x \le -(1 + 8x)$	20. $2(7x - 3) \le 12x + 16$
21. $2 \le x + 5 < 4$	22. $5 \le 3x - 4 \le 14$
23. $-1 < 2x - 5 < 7$	24. $1 < 3x + 4 \le 16$
25. $-2 < 8 - 2x \le -1$	26. $-3 \le 3x + 7 \le \frac{1}{2}$

77	1	2x - 13	_ 2	$\frac{1}{28} = \frac{1}{2} = \frac{4-3x}{2} = \frac{1}{2}$
41.	6	12	$=\frac{1}{3}$	20. $-\frac{1}{2} \le \frac{1}{5} \le \frac{1}{4}$

29–62 Solve the nonlinear inequality. Express the solution using interval notation and graph the solution set.

29. $(x+2)(x-3) < 0$	30. $(x-5)(x+4) \ge 0$
31. $x(2x + 7) \ge 0$	32. $x(2 - 3x) \le 0$
33. $x^2 - 3x - 18 \le 0$	34. $x^2 + 5x + 6 > 0$
35. $2x^2 + x \ge 1$	36. $x^2 < x + 2$
37. $3x^2 - 3x < 2x^2 + 4$	38. $5x^2 + 3x \ge 3x^2 + 2$
39. $x^2 > 3(x+6)$	40. $x^2 + 2x > 3$
41. $x^2 < 4$	42. $x^2 \ge 9$
43. $-2x^2 \le 4$	
44. $(x + 2)(x - 1)(x - 3) \le 0$)
45. $x^3 - 4x > 0$	46. $16x \le x^3$
47. $\frac{x-3}{x+1} \ge 0$	48. $\frac{2x+6}{x-2} < 0$
49. $\frac{4x}{2x+3} > 2$	50. $-2 < \frac{x+1}{x-3}$

51.
$$\frac{2x+1}{x-5} \le 3$$

52. $\frac{3+x}{3-x} \ge 1$
53. $\frac{4}{x} < x$
54. $\frac{x}{x+1} > 3x$
55. $1 + \frac{2}{x+1} \le \frac{2}{x}$
56. $\frac{3}{x-1} - \frac{4}{x} \ge 1$
57. $\frac{6}{x-1} - \frac{6}{x} \ge 1$
58. $\frac{x}{2} \ge \frac{5}{x+1} + 4$
59. $\frac{x+2}{x+3} < \frac{x-1}{x-2}$
60. $\frac{1}{x+1} + \frac{1}{x+2} \le 0$
61. $x^4 > x^2$
62. $x^5 > x^2$

63–76 Solve the absolute value inequality. Express the answer using interval notation and graph the solution set.

63. $ x \le 4$	64. $ 3x < 15$
65. $ 2x > 7$	66. $\frac{1}{2} x \ge 1$
67. $ x-5 \le 3$	68. $ x+1 \ge 1$
69. $ 2x - 3 \le 0.4$	70. $ 5x - 2 < 6$
71. $\left \frac{x-2}{3}\right < 2$	$72. \left \frac{x+1}{2} \right \ge 4$
73. $ x + 6 < 0.001$	74. $3 - 2x + 4 \le 1$
75. $8 - 2x - 1 \ge 6$	76. $7 x+2 +5>4$

77–80 ■ A phrase describing a set of real numbers is given. Express the phrase as an inequality involving an absolute value.

77. All real numbers x less than 3 units from 0

- **78.** All real numbers x more than 2 units from 0
- **79.** All real numbers x at least 5 units from 7
- **80.** All real numbers *x* at most 4 units from 2

81–86 A set of real numbers is graphed. Find an inequality involving an absolute value that describes the set.

87–90 Determine the values of the variable for which the expression is defined as a real number.

87.
$$\sqrt{16 - 9x^2}$$

88. $\sqrt{3x^2 - 5x + 2}$
89. $\left(\frac{1}{x^2 - 5x - 14}\right)^{1/2}$
90. $\sqrt[4]{\frac{1 - x}{2 + x}}$

91. Solve the inequality for *x*, assuming that *a*, *b*, and *c* are positive constants.

(a)
$$a(bx - c) \ge bc$$
 (b) $a \le bx + c < 2a$

92. Suppose that a, b, c, and d are positive numbers such that

$$\frac{a}{b} < \frac{c}{d}$$
Show that $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$

Applications

- **93. Temperature Scales** Use the relationship between *C* and *F* given in Example 9 to find the interval on the Fahrenheit scale corresponding to the temperature range $20 \le C \le 30$.
- **94. Temperature Scales** What interval on the Celsius scale corresponds to the temperature range $50 \le F \le 95$?
- **95. Car Rental Cost** A car rental company offers two plans for renting a car.

Plan A: \$30 per day and 10¢ per mile

Plan B: \$50 per day with free unlimited mileage

For what range of miles will plan B save you money?

96. Long-Distance Cost A telephone company offers two long-distance plans.

Plan A: \$25 per month and 5¢ per minute

Plan B: \$5 per month and 12¢ per minute

For how many minutes of long-distance calls would plan B be financially advantageous?

97. Driving Cost It is estimated that the annual cost of driving a certain new car is given by the formula

C = 0.35m + 2200

where *m* represents the number of miles driven per year and *C* is the cost in dollars. Jane has purchased such a car, and decides to budget between \$6400 and \$7100 for next year's driving costs. What is the corresponding range of miles that she can drive her new car?

98. Gas Mileage The gas mileage g (measured in mi/gal) for a particular vehicle, driven at v mi/h, is given by the formula $g = 10 + 0.9v - 0.01v^2$, as long as v is between 10 mi/h and 75 mi/h. For what range of speeds is the vehicle's mileage 30 mi/gal or better?