Name:	D
PC: Quadratic Functions	Date:
	Ms. Loughran

Standard form: $y = f(x) = ax^2 + bx + c$, $a \ne 0$

- If a > 0, then the parabola opens upward; if a < 0, then the parabola opens downward.
- The vertex of the parabola is the point $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$, and the axis of symmetry is $x = \frac{-b}{2a}$.
- To find the y-intercept, let x = 0 and solve for y.
- To find the x-intercept, let y = 0 and solve for x. (This will result in a quadratic equation which might have 0, 1 or 2 solutions.)

Vertex form: $y = f(x) = a(x-h)^2 + k$, $a \ne 0$

- If a > 0, then the parabola opens upward; if a < 0, then the parabola opens downward.
- The vertex of the parabola is the point (h,k) and x = h is the axis of symmetry.
- To find the y-intercept, let x = 0 and solve for y.
- To find the x-intercept, let y = 0 and solve for x. (This will result in a quadratic equation which might have 0, 1 or 2 solutions.)

General Graph for $y = x^2$

Domain: Range:

Examples:

1. Given the quadratic function $f(x) = -x^2 + 6x - 5$, find the axis of symmetry, vertex, x- and y-intercepts and graph it.

2. Given the quadratic function $f(x) = (x-4)^2$, find the axis of symmetry, vertex, x- and y-intercepts and graph it.

How does the graph in question 2 compare to the general graph of $y = x^2$?

3. Given the quadratic function, $f(x) = 2x^2 + x - 1$ find the axis of symmetry, vertex, x- and y-intercepts and graph it.

4. Given the quadratic function $f(x) = 2(x-1)^2 + 4$, find the axis of symmetry, vertex, x- and y-intercepts and graph it.

5. Use the information to write the vertex form equation of each parabola

(a)
$$y = -x^2 - 14x - 59$$

(b)
$$y = x^2 - 12x + 46$$

(c)
$$y = x^2 - 6x + 5$$

(d)
$$y = x^2 + 16x + 71$$

(e)
$$y = x^2 - 2x - 5$$

(f)
$$y = x^2 + 4x$$

(g)
$$y = 2x^2 + 36x + 170$$

(h)
$$y = 2x^2 + 12x - 2$$

(i)
$$y = 2x^2 - 12x - 23$$

For each of the following, find the axis of symmetry, vertex, x- and y-intercepts and sketch the graph on a separate piece of graph paper.

6.
$$y = (x-5)^2 - 4$$

8.
$$y = x^2 + 4x + 5$$

8.
$$y = x^2 + 4x + 5$$
 10. $y = 4x^2 - 8x + 3$

7.
$$f(x) = x^2 + 6x + 5$$

9.
$$f(x) = -x^2 + 8x$$
 11. $y = x^2 - 6x + 13$

11.
$$y = x^2 - 6x + 13$$