Name:
PCH: Rational Zeros and Intermediate Value Theorems

Date:
Ms.Loughran

Do Now:

1. When a function $f(x)$ is divided by $2 x-3$, the quotient is $3 x^{2}-4 x+2$ and remainder is -7 . Find $f(x)$ in simplest form.
2. Find the remainder when $x^{124}-5 x^{76}+2 x^{45}-3 x+5$ is divided by $x+1$.

Rational Zeros Theorem

If the polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ has integer coefficients, then every rational zero of P is of the form

$$
\frac{p}{q}
$$

where p is a factor of the constant coefficient a_{0} and q is a factor of the leading coefficient a_{n}

Classwork:

1. Let $P(x)=x^{4}-5 x^{3}-5 x^{2}+23 x+10$. Find the zeros of $P(x)$.
2. Factor the polynomial $P(x)=2 x^{3}+x^{2}-13 x+6$

For 3-8, find the complete factorization and all zeros of the following polynomials using the information given.
3. $P(x)=2 x^{5}-5 x^{4}+x^{3}+4 x^{2}-4 x$
4. $P(x)=x^{4}+6 x^{3}+2 x^{2}-18 x-15$
5. $P(x)=x^{4}-5 x^{3}+3 x^{2}+15 x-18$
6. $P(x)=x^{4}+6 x^{3}+7 x^{2}-12 x-18$
7. $P(x)=x^{4}+3 x^{3}+3 x^{2}+x$
8. $P(x)=3 x^{4}-11 x^{3}-3 x^{2}-6 x+8$

Intermediate Value Theorem
Let a and b be real numbers such that $a<b$. If f is a polynomial function such that $f(a) \neq f(b)$, then in the interval $[a, b], f$ takes on every value between $f(a)$ and $f(b)$.

This theorem helps locate the real zeros of a polynomial function. If $f(a)$ is positive real number, and another $f(b)$ is a negative number and $a<b$, you can conclude that the function has at least one real zero between these two variables
9. Use the Intermediate Value Theorem to prove that a zero exists on the interval [1,2] of the function $f(x)=-x^{3}+2 x^{2}+9 x-11$.
10. Use the Intermediate Value Theorem to prove that $f(x)=x^{3}+x$ takes on the value 9 for some x in $[1,2]$.
11. Selected value of the continuous function f are shown in the table below. Is the following statement true or false?

$$
f(x)=2 \text { has at least } 1 \text { solution in the interval }[0,7] .
$$

x	$f(x)$
0	4
3	1
4	-4
5	-12
7	-32

12. Selected value of the continuous function f are shown in the table below. Is the following statement true or false?

$$
f(x)=5 \text { has at least } 1 \text { solution in the interval }[-3,2] .
$$

x	$f(x)$
-3	-2
0	10
1	11
2	8

