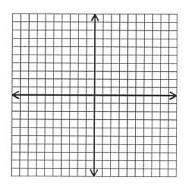
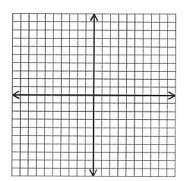
Name:\_\_\_\_\_

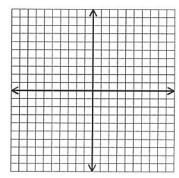
Date: \_\_\_\_ Ms. Loughran


PC: Reducible Functions

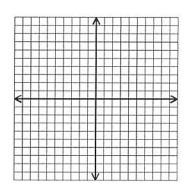

Undefined:  $\frac{a}{b}$  where b = 0 and  $a \neq 0$ 

Indeterminate:  $\frac{a}{b}$  where b = 0 and a = 0

A rational function that is indeterminate for a value of x is *reducible*. A "hole" occurs at the value(s) of x which make the given function indeterminate and the reduced fraction defined.

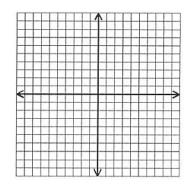

Is the graph of  $y = \frac{x}{x}$  the same as the graph of y = 1?






If a function is reducible use the reduced function when finding the intercepts.

Graph each of the following. State the domain, range, and any intercepts and asymptotes.




1. 
$$y = \frac{x^2 - 4}{x + 2}$$



$$2. \quad y = \frac{3 - x}{x^2 - 5x + 6}$$

3. 
$$y = \frac{(x+1)(x+3)(x-3)(x-2)}{(x+1)(x-2)}$$



4. 
$$y = \frac{x^3 - 1}{x - 1}$$

## Practice

Graph each of the following. State the domain, range, and any intercepts and asymptotes.

1. 
$$y = \frac{x^2 - 9}{x + 3}$$

2. 
$$y = \frac{x^2 - x - 6}{x - 3}$$

3. 
$$y = \frac{x^2 - 16}{x + 4}$$

4. 
$$y = \frac{x+1}{x^2-1}$$

5. 
$$y = \frac{x-1}{x^2 + x - 2}$$

6. 
$$y = \frac{1 + x - 2x^2}{x - 1}$$

7. 
$$y = \frac{x^3 - 8}{x - 2}$$

8. 
$$y = \frac{x-1}{x^2-1}$$

9. 
$$y = \frac{x^3 - 2x^2 - 3x + 6}{2 - x}$$