Name:
PCH: Reducible Rational Functions

Date:
Ms. Loughran

Undefined: $\frac{a}{b}$ where $b=0$ and $a \neq 0$
Indeterminate: $\frac{a}{b}$ where $b=0$ and $a=0$

A rational function that is indeterminate for a value of x is reducible. A "hole" occurs at the value(s) of x which make the given function indeterminate and the reduced fraction defined.

Is the graph of $y=\frac{x}{x}$ the same as the graph of $y=1$?

If a function is reducible use the reduced function when finding the intercepts.

Sketch the graph of each of the following. State the domain, range, and any intercepts.

1. $y=\frac{x^{2}-4}{x+2}$
2. $y=\frac{x^{2}-5 x+6}{3-x}$
3. $y=\frac{(x+1)(x+3)(x-3)(x-2)}{(x+1)(x-2)}$
4. $y=\frac{x^{3}-1}{x-1}$

Practice

Sketch the graph of each of the following. State the domain, range, and any intercepts.

1. $y=\frac{x^{2}-9}{x+3}$
2. $y=\frac{x^{2}-x-6}{x-3}$
3. $y=\frac{x^{2}-16}{x+4}$
4. $y=\frac{1+x-2 x^{2}}{x-1}$
5. $y=\frac{x^{3}-8}{x-2}$
6. $y=\frac{x^{3}-2 x^{2}-3 x+6}{2-x}$
