Name
Date: \qquad
Pre-Calculus Review Sheet for Exam 1 Quarter 2

1. Write a piecewise function for each of the graphs below:
a)

b)

2. Use the algebraic definition of absolute value to rewrite each expression as a piecewise function and then sketch each graph.
a) $f(x)=\left|\frac{1}{3} x+2\right|$
b) $f(x)=|x-1|+2$
c) $f(x)=\frac{|x-3|}{3-x}$

3) Describe each transformation in terms of the original function $f(x)=x^{2}$ then graph each function. State the domain, range, and any x - or y -intercepts
a) $f(x)=-(x-3)^{2}$
b) $f(x)=3-(x+2)^{2}$
c) $f(x)=x^{2}+4 x-6$

4) Describe each transformation in terms of the original function $f(x)=|x|$ then graph each function.

State the domain, range, and any x - or y -intercepts.
a) $f(x)=|-x|+3$
b) $f(x)=-|x+2|$
c) $f(x)=|x-2|-1$

5) Describe each function in terms of the basic function $f(x)=\sqrt{x}$ then graph each function. State the domain, range, x - and y -intercepts.
a) $f(x)=-\sqrt{x+2}$
b) $f(x)=\sqrt{x-1}+5$

6) Graph each function as a transformation of the basic function $f(x)=x^{3}$. State the domain, range, x - and y-intercepts.
a) $f(x)=(x+2)^{3}-3$
b) $f(x)=(-x)^{3}+2$

7) Write an equation for the indicated transformation that is applied to the given function.
a) $f(x)=x^{4}$; shift 3 units to the right, reflect over the x-axis, shifted up 5 units
b) $f(x)=\sqrt{x}$; shift to the left 2 , shift down 4 units
c) $f(x)=x^{2}$; shift to the right 4 , reflected over the x-axis, shift up 2 units
d) $f(x)=x^{3}$; reflect over the y-axis, shifted up 3 units
8) Write $f(x)=-x^{2}+4 x-3$ in vertex form.
9) For each, find the axis of symmetry, vertex, domain, range, x-intercepts, y-intercepts and graph it
a. $f(x)=-x^{2}+4 x-3$

b. $f(x)=2(x-1)^{2}-2$

10) Sketch the function without using a graphing calculator. Find the domain and range of each function. Evaluate the function as directed.
a. $f(x)=\left\{\begin{array}{lc}-x^{2}+4, & x \leq 2 \\ \frac{1}{2} x-3, & 2<x<4 \\ \sqrt{x-4}, & x \geq 4\end{array}\right.$

$$
\begin{array}{rlrl}
f(-2) & = & f(2)= \\
\text { Evaluate: } & f(-1) & = & f(4)= \\
f(0) & = & & f(8)=
\end{array}
$$

$$
f(2)=
$$

11) Write a piecewise function that is represented by the accompanying graph of $y=f(x)$ and evaluate.
$f(-2)=$
$f(-1)=$
$f(0)=$
$f(1)=$
$f(3)=$
$f(5)=$

12. Determine algebraically whether the following functions are even, odd, or neither
a) $f(x)=-3 x^{2}+4$
b) $f(x)=2 x^{3}-4 x$
c) $f(x)=\frac{x}{x^{2}-1}$
d) $f(x)=(x-2)^{2}+1$
13. Write an equation for the indicated transformation given the function
a. $\quad f(x)=\sqrt{x}$; shift to the left 2 , vertical stretch by a factor of 3 , shift down 4 units
b. $f(x)=x^{3}$; reflect over the y-axis, horizontal stretch by a factor of 2
14. Describe each transformation in terms of the original function then graph each function. State the domain, range, and any x - or y -intercepts.
a. Original $f(x)=|x|$
b. Original $f(x)=x^{3}$

$$
f(x)=|2 x|
$$

$$
f(x)=\frac{1}{2} x^{3}
$$

15. Divide the following and express the answer as a quotient plus remainder:
a) $\left(6 x^{2}-7 x-5\right) \div(3 x-5)$ (synthetic)
b) $\left(2 x^{2}+13 x-8\right) \div(x-2)$ (synthetic)
c) $\left(3 x^{3}+5 x^{5}+1\right) \div(x+2)$
d) $\left(7 x^{2}-23 x+6\right) \div(x-3)($ long $)$
e) $\left(2 x^{4}-3 x^{2}+7 x-8\right) \div\left(x^{2}+x-3\right)$

