## 1. If $f(x)=x^3-3x+6$ , find the following:

a. 
$$f(-2)$$

b. 
$$f(x-2)$$

2. If 
$$h(x) = \sqrt{x-25}$$
,  $f(x) = x-1$ , and  $g(x) = x^2$ , find and expression for the following:

a. 
$$(g \circ f)(x)$$

b. 
$$(f \circ h \circ g)(x)$$

c. Evaluate 
$$\frac{f(x+h)-f(x)}{h}$$
 if  $f(x)=x^2-5x+4$ 

3. Find the inverse of 
$$f(x)$$
 if  $f(x)=3x-8$ 

4. Find the inverse of 
$$f(x)$$
 if  $f(x) = \sqrt{4x-3}$ 

## 5. Find the slope of the line:

- a. Which passes through the points (4,-4) and (-2,7)
- b. Whose equation is -7x + 4y = 12
- c. Perpendicular to a line whose equation is y + 5 = 3(x 3)
- d. Parallel to a line whose equation is y = 2x-5

## 6. For each, write the equation of the line in point-slope, slope-intercept, and standard form:

- a. Whose slope is 3 and which passes through (1,-4)
- b. Which passes through the points (4,-4) and (-2,7)

## 7. Express each of the following as composites of two or more functions:

a. 
$$7x-2$$

$$b. \quad \frac{18}{\sqrt{x^2 - 3}}$$

8. Show that f(x) and g(x) are inverses of each other using compositions.  $f(x) = \sqrt{2x-3}$  and

$$g(x) = \frac{1}{2}x^2 + \frac{3}{2}$$

9. Graph:

a. 
$$f(x) = \frac{-1}{2}(x+2)$$





10. For each of the following, simplify the expression completely. (Remember to write down any restrictions.)

a. 
$$\frac{5k^2 - 20k}{12 + 5k - 2k^2}$$

b. 
$$\frac{5h^3}{h^2 - h}$$

11. Use the geometric definition of absolute value to find the solution set to the following.

a. 
$$|x + 3| = 5$$

b. 
$$|5 - 4x| \le 6$$

12. Perform the indicated operation(s) and simplify. (Do not forget to write the restrictions.)

a. 
$$\frac{1 - \frac{1}{1 - x}}{4 + \frac{3}{x^2 - 1}}$$

c. 
$$\frac{1}{3y} + \frac{y^2 + 1}{y^2 - 4y} + \frac{y - 2}{36 - 9y}$$

b. 
$$\frac{9-x^{-2}}{3x^{-1}-x^{-2}}$$

d. 
$$\frac{a^2 + 2ab + b^2}{a^2 - b^2} \div \frac{2a^2 - ab - b^2}{a^2 - ab - 2b^2}$$

e. 
$$\frac{2y^2 - y - 15}{3y^2 - y - 10} \div \frac{y^2 - 10y + 21}{9y^2 - 25}$$

13. Solve each inequality and express the solution set in (a) set builder notation and (b) interval notation.

a. 
$$x^2 + 9x + 14 < 0$$

$$b. \quad \frac{3x}{4} \le \frac{3x - 6}{8}$$

c. 
$$\frac{x^2 - 3x - 10}{(x-1)^2} > 0$$

14. Factor each of the following completely.

a. 
$$28x^3 - 49x^2 + 21x$$

b. 
$$2x^3 + 3x^2 - 2x - 3$$

c. 
$$75x^2 - 3$$

d. 
$$8x^3 + 27$$

e. 
$$x^6 - 64y^3$$

f. 
$$x^4 - 6x^2 - 27$$

15. For each of the following, find the axis of symmetry, vertex, any x-intercepts, any y-intercepts and its domain and range. Also state whether the vertex of each is a minimum or a maximum.

a. 
$$f(x) = -x^2 - 2x + 8$$

b. 
$$f(x) = 2(x-1)^2 - 2$$

c. 
$$f(x) = -x^2 + 5x + 6$$

d. 
$$f(x) = 4x^2 + 12x + 6$$

e. 
$$f(x) = -3x^2 - 6x - 7$$