Name: PCH: Solving First Degree Trig Equations Date:_____ Ms. Loughran

Do Now:

Find the exact value of each of the following trigonometric functions:

1.
$$\cot \frac{5\pi}{6}$$
 2. $\csc \frac{4\pi}{3}$ 3. $\sec -\frac{7\pi}{4}$

Examples:

1. Solve for θ in the interval $0 \le \theta \le 360^{\circ}$.

$$2\cos\theta - 3\sqrt{2} = -2\sqrt{2}$$

2. Solve for θ in the interval $0 \le \theta \le 2\pi$. $2\sin\theta - 1 = 0$ 3. Solve for θ , in the interval $0^{\circ} \le \theta \le 360^{\circ}$. $3\cos\theta + \sqrt{3} = 5\cos + 2\sqrt{3}$

4. Solve for θ in the interval $0^{\circ} \le \theta \le 360^{\circ}$ $8 \sec \theta - 2 = 10 + 2 \sec \theta$ 5. Solve for θ , to the nearest degree in the interval $0^{\circ} \le \theta \le 360^{\circ}$. $3 \tan \theta + 4 = 5 \tan \theta - 1$

6. Solve for θ to the nearest degree in the interval $0^{\circ} \le \theta \le 360^{\circ}$ $3(\sin \theta - 1) = -4$ 7. Solve for θ to the nearest degree in the interval $0^{\circ} \le \theta \le 360^{\circ}$ $4\cos\theta = \cos\theta + 2$

8. For $0 \le \theta \le \pi$, solve:

 $\tan\theta\cos\theta - \tan\theta = 0$

9. For $0^{\circ} \le \theta \le 360^{\circ}$, solve : $|2\cos\theta - 3| = 5$

HOMEWORK SECTION IS ON NEXT PAGE.

To Find an Angle θ in Quadrant	Given Reference Angle <i>R</i> in Degrees	Given Reference Angle R in Radians
I	$\theta = R$	$\theta = R$
II	$\theta = 180^\circ - R$	$\theta = \pi - R$
III	$\theta = 180^\circ + R$	$\theta = \pi + R$
IV	$\theta = 360^\circ - R$	$\theta = 2\pi - R$

Exercises

Exercises 1–6: Solve for exact values of θ in the interval $0^{\circ} \leq \theta \leq 360^{\circ}$.

- 1 $2 \tan \theta 3 = -5$
- 2 $4(\csc \theta + 2) = \csc \theta + 14$
- 3 $2\sin \theta + 3 = 3(\sin \theta + 1)$
- 4 $2\cos\theta + 5\sqrt{3} = 4\sqrt{3}$ 1 . 5 \

5
$$6\left(\cot\theta - \frac{\sqrt{3}}{2}\right) = 5\cot\theta - 2\sqrt{3}$$

6 $3\sin \theta - 1 = 2$

Exercises 7–12: Solve for exact values of θ in the interval $0 \le \theta \le 2\pi$.

- 7 $3\tan\theta 4 = 4\tan\theta 5$
- 8 $3\sec\theta = \frac{2}{3}(3\sec\theta 3)$

9
$$2(\sin\theta + \sqrt{2}) = \sqrt{2}$$

- 9 $2(\sin \theta + \sqrt{2}) = \sqrt{2}$ 10 $6\cos \theta + \sqrt{3} = -4(\cos \theta + \sqrt{3})$
- 11 $4\csc \theta + 5 = 3\csc \theta + 4$
- 12 $4\cos\theta + 3 = 3$

Exercises 13–17: Solve for β , to the nearest tenth of *a degree*, in the interval $0^{\circ} \leq \beta \leq 360^{\circ}$.

13 $9\sin\beta - 2 = 4\sin\beta - 1$

14
$$-2(\tan \beta - 4) = 3(4 - \tan \beta)$$

15 $3 \sec \beta + 12 = \frac{3}{4} (8 \sec \beta - 4)$

- 16 $\frac{1}{2}\csc\beta + 1 = \frac{1}{4}(\csc\beta + 8)$
- 17 $2\tan\beta \sqrt{3} = 2\sqrt{3} \tan\beta$
- 18 Find $m \angle B$ in the interval $180^\circ \le B \le 270^\circ$ that satisfies the equation $2\tan B - 3 =$ 3tan B - 4.
- 19 In the interval $90^\circ \le x \le 180^\circ$, find the value of x that satisfies the equation $3(\sin x - 2) =$ $\sin x - 6$.
- 20 If $\frac{3\pi}{2} \le \theta \le 2\pi$, solve for θ : 5cos θ = $3\cos\theta + \sqrt{2}$
- 21 Find all values of x, to the nearest tenth of a degree, in the interval $0^{\circ} \le x < 360^{\circ}$: $|3\cos\theta + 1| = 2$
- 22 Solve for all values of θ in the interval $0^{\circ} \le \theta < 360^{\circ}: \sqrt{2\sin x + 7} + 1 = 4$

Exercises 23-30: Select the numeral preceding the choice that best completes the statement or answers the question.

- 23 If θ is a positive acute angle, and $2\tan \theta = 7$, what is the value of θ to the nearest degree?
 - (1) $\frac{7}{2}$

 - (2) 16°
 - (3) 27°
 - (4) 74°