Name:	
-------	--

Date:____ Ms. Loughran

PC: Solving First Degree Trig Equations

Examples:

1. Solve for θ , to the nearest degree in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

$$3\tan\theta - 4 = 5\tan\theta - 1$$

2. Solve for θ in the interval $0 \le \theta \le 2\pi$.

$$2\cos\theta + 3\sqrt{2} = 2\sqrt{2}$$

3. Solve for θ in the interval $0^{\circ} \le \theta \le 360^{\circ}$ $8 \sec \theta - 2 = 10 + 2 \sec \theta$

4. Solve for θ to the nearest degree in the interval $0^{\circ} \le \theta \le 360^{\circ}$ $3(\sin \theta - 1) = -4$

5. Solve for θ in the interval $0 \le \theta \le 2\pi$.

$$2\sin\theta-1=0$$

6. Solve for θ to the nearest degree in the interval $0^{\circ} \le \theta \le 360^{\circ}$ $4\cos\theta = \cos\theta + 2$

7. For $0 \le \theta \le \pi$, solve:

$$\tan\theta\cos\theta - \tan\theta = 0$$

8. For $0^{\circ} \le \theta \le 360^{\circ}$, solve: $|2\cos\theta - 3| = 5$

Use the table to help you obtain your answer after you find the reference angle.

To Find an Angle θ in Quadrant	Given Reference Angle R in Degrees	Given Reference Angle R in Radians
I	$\theta = R$	$\theta = R$
II	$\theta = 180^{\circ} - R$	$\theta = \pi - R$
Ш	$\theta = 180^{\circ} + R$	$\theta = \pi + R$
IV	$\theta = 360^{\circ} - R$	$\theta = 2\pi - R$

Exercises

Exercises 1–6: Solve for exact values of θ in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

$$1 \quad 2\tan\theta - 3 = -5$$

$$2 \quad 4(\csc\theta + 2) = \csc\theta + 14$$

$$3 \quad 2\sin\theta + 3 = 3(\sin\theta + 1)$$

4
$$2\cos\theta + 5\sqrt{3} = 4\sqrt{3}$$

$$5 \quad 6\left(\cot\theta - \frac{\sqrt{3}}{2}\right) = 5\cot\theta - 2\sqrt{3}$$

6
$$3\sin\theta - 1 = 2$$

Exercises 7–12: Solve for exact values of θ in the interval $0 \le \theta \le 2\pi$.

7
$$3\tan\theta - 4 = 4\tan\theta - 5$$

8
$$3\sec\theta = \frac{2}{3}(3\sec\theta - 3)$$

$$9 \quad 2(\sin\theta + \sqrt{2}) = \sqrt{2}$$

10
$$6\cos\theta + \sqrt{3} = -4(\cos\theta + \sqrt{3})$$

11
$$4\csc \theta + 5 = 3\csc \theta + 4$$

12
$$4\cos\theta + 3 = 3$$

Exercises 13–17: Solve for β , to the *nearest tenth of a degree*, in the interval $0^{\circ} \leq \beta \leq 360^{\circ}$.

13
$$9\sin \beta - 2 = 4\sin \beta - 1$$

14
$$-2(\tan \beta - 4) = 3(4 - \tan \beta)$$

15
$$3\sec \beta + 12 = \frac{3}{4} (8\sec \beta - 4)$$

16
$$\frac{1}{2}\csc\beta + 1 = \frac{1}{4}(\csc\beta + 8)$$

17
$$2\tan \beta - \sqrt{3} = 2\sqrt{3} - \tan \beta$$

- 18 Find $m \angle B$ in the interval $180^{\circ} \le B \le 270^{\circ}$ that satisfies the equation $2 \tan B 3 = 3 \tan B 4$.
- 19 In the interval $90^{\circ} \le x \le 180^{\circ}$, find the value of x that satisfies the equation $3(\sin x 2) = \sin x 6$.

20 If
$$\frac{3\pi}{2} \le \theta \le 2\pi$$
, solve for θ : $5\cos \theta = 3\cos \theta + \sqrt{2}$

- 21 Find all values of x, to the nearest tenth of a degree, in the interval $0^{\circ} \le x < 360^{\circ}$: $|3\cos \theta + 1| = 2$
- 22 Solve for all values of θ in the interval $0^{\circ} \le \theta < 360^{\circ}$: $\sqrt{2\sin x + 7} + 1 = 4$

Exercises 23–30: Select the numeral preceding the choice that best completes the statement or answers the question.

- 23 If θ is a positive acute angle, and $2\tan \theta = 7$, what is the value of θ to the *nearest degree*?
 - (1) $\frac{7}{2}$
 - (2) 16°
 - (3) 27°
 - (4) 74°