The General Equation $ax^2 + by^2 = c$

Depending on the values of the coefficients, the general equation $ax^2 + by^2 = c$, where

Values of Coefficients $a = b$ and have the same sign as c	Name of Graph circle	Example	
		$2x^2 + 2y^2 = 18$ or $x^2 + y^2 = 9$ circle with center at origin and radius = 3	3 3 0 3 x
$a \neq b$ and have the same sign as c	ellipse	$9x^2 + 25y^2 = 225$ ellipse with center at origin and x-intercepts = ± 5 y-intercepts = ± 3	Ay 3 3 5 5 x
a, b have different signs	hyperbola	x² - y² = 9 hyperbola with center at origin and x-intercepts = ±3 no y-intercepts	-3) O 3

Recall: The equation of a parabola contains only one square term: either $y = ax^2 + bx + c$ or $x = ay^2 + by + c$ The equation of a straight line contains no square terms: ax + by = c

EXERCISES =

- In 1-14, identify the graph of the given relation as
 - (1) a circle
- (3) a hyperbola
- (2) an ellipse
- (4) a parabola
- 1. $4y^2 = 25 4x^2$
- 8. $4x^2 + 16y^2 = 25$
- $2. \ 2x^2 + 3y^2 = 24$
- 9. $x^2 + y = 9$
- 3. $x^2 = y^2 + 9$
- 4. $x^2 = 6 y$
- 10. $2x^2 = 5 2y^2$
- 11. $y^2 = 6 3x^2$
- 5. $4x^2 100 = 25y^2$
- 12. $2x^2 9 = 2y^2$
- 6. $3y^2 = 6 x^2$
- 13. $4x^2 4y^2 = 9$
- 7. $3x^2 + 2y^2 = 6$
- 14. $x^2 \frac{y^2}{16} = 1$
- 15. Which of the following is the equation of a hyperbola?
 - (1) $x^2 = 10 y^2$
- $(3) \ y^2 = x^2 1$
- (2) $x = y^2 9$
- $(4) \ 4x^2 + y^2 = 9$

- 16. The graph of which equation is an ellipse?
 - $(1) \ 3x^2 4y^2 = 7$
- (3) $y = 2x^2 + 3x 5$
- (2) $\frac{y+6}{x-1} = 3$
- $(4) \ x^2 + 5y^2 = 2$
- 17. Which is an equation of a circle?
 - $(1) \ 2x^2 2y^2 = 18$
- $(3) \ 3x^2 + 3y^2 = 21$
- $(2) \ 2x^2 + 3y^2 = 36$
- (4) $x^2 = y^2 + 16$
- 18. Which equation has a hyperbola as its graph?
 - (1) $x^2 = 10 + y$
- (3) $3x^2 = 10 2y^2$ (4) $3x^2 = 10 + 2y^2$
- (2) $x^2 = 10 y^2$
- 19. Which equation has an ellipse as its graph?
 - (1) $2x^2 = 8 3y$
- (3) $2x^2 = 8 3y^2$
- (2) $2x^2 = 8 + 3y^2$
- (4) 2x = 8 3y
- 20. Which is an equation of a circle?
 - $(1) 2x^2 + y^2 = 7$
- (3) $x^2 y^2 = 10$
- (2) $x = \frac{y}{9}$
- (4) $5(x^2 + y^2) = 12$

- 21. Which is an equation of a parabola?
 - (1) $x^2 = 3 + y^2$ (2) $x = 3 + y^2$

- (3) x = 3 + y(4) $y^2 = 3x^2 + 3$
- **22.** The graph of the relation $ay = bx^2 + c$ in which neither a nor b is 0 is
 - (1) a parabola
- (3) an ellipse
- (2) a straight line
- (4) a hyperbola
- 23. If a, b, and c are positive unequal numbers, the graph of $ax^2 + by^2 = c$ is
 - (1) a circle
- (3) an ellipse
- (2) a parabola
- (4) a hyperbola
- **24.** The graph of $ax^2 + by^2 = c$, in which a, b, and c are real numbers, is an ellipse if
 - (1) a = b, a > 0, b < 0, c > 0
 - (2) a = b, a > 0, b > 0, c < 0
 - (3) $a \neq b, a > 0, b > 0, c > 0$
 - (4) $a \neq b, a > 0, b < 0, c > 0$
- **25.** If $a \neq 0$, $b \neq 0$, and $c \neq 0$, the graph of $ax^2 + by^2 = c$ can not be
 - (1) an ellipse
- (3) a parabola
- (2) a circle
- (4) a hyperbola
- **26.** The graph of the equation $\frac{x^2}{4} + \frac{y^2}{16} = 1$ passes through the point whose coordinates are
 - (1) (0,0) (2) (0,2) (3) (0,4) (4) (4,0)

- 27. Which relation is a function?

- (1) $\{(x, y) | x^2 + y = 4\}$ (3) $\{(x, y) | x^2 y^2 = 4\}$ (2) $\{(x, y) | x^2 + y^2 = 4\}$ (4) $\{(x, y) | x^2 + 4y^2 = 4\}$
- 28. If the replacement set is the set of real numbers. what is the domain of the relation represented by $\{(x, y) | x^2 + 4y^2 = 16\}$?

 - (1) $\{y \mid -2 \le y \le 2\}$ (3) $\{x \mid -4 \le x \le 4\}$ (2) $\{y \mid -2 < y < 2\}$ (4) $\{x \mid -4 < x < 4\}$
- 29. Which is the graph of a quadratic relation for which the domain consists of all the real numbers?

- **30.** If the graphs of the equations $x^2 + y^2 = 9$ and y = 3are drawn on the same set of axes, what is the total number of points common to both graphs?
 - (1) 1
- (2) 2
- (3) 3
- (4) 0

- 31. When drawn on the same set of axes, the points of intersection of the graphs of $x^2 + y^2 = 16$ and x = 2are located in quadrants
 - (1) I and III
- (3) II and III
- (2) I and IV
- (4) II and IV
- **32.** The graphs of the equations $x^2 + y^2 = 25$ and $y = x^2$ are drawn on the same set of axes. The total number of points common to these graphs is
 - (1) 1
- (2) 2
- (3) 3
- **33.** The graph of $x^2 + y^2 = 25$ and the graph of x - 4 = 0 are drawn on the same set of axes. A point of intersection of the graphs is
 - (1) (5,0) (2) (-4,-3) (3) (4,-3) (4) (-3,4)
- **34.** What is the graph of the solution set of $x^2 + y^2 > 9$?

35. Each equation in column A has one of the geometric figures in column B as its graph. List the numbers 1-5 on your answer paper and after each number write the letter that indicates the corresponding graph.

Column A

- (1) $x^2 + y^2 4 = 0$
- (2) $4x^2 + y^2 1 = 0$
- (3) $x^2 y 4 = 0$
- (4) $x^2 + 4y^2 = 0$
- $(5) \ x^2 4y^2 = 0$

Column B

- a. The point (0, 0)
- b. Two straight lines parallel to the y-axis
- c. Two straight lines intersecting at the origin
- d. A parabola that crosses the y-axis at (0, -4)
- e. A circle whose center is the origin and whose radius is 2
- f. An ellipse that crosses the y-axis at (0, 1) and (0, -1)
- g. A hyperbola that crosses the y-axis at (0, 2) and (0, -2)