The General Equation $ax^2 + by^2 = c$ Depending on the values of the coefficients, the general equation $ax^2 + by^2 = c$, where | Values of Coefficients $a = b$ and have the same sign as c | Name of Graph circle | Example | | |--|-----------------------|--|-----------------------| | | | $2x^2 + 2y^2 = 18$
or $x^2 + y^2 = 9$
circle with center
at origin and
radius = 3 | 3
3
0
3
x | | $a \neq b$ and have the same sign as c | ellipse | $9x^2 + 25y^2 = 225$
ellipse with center
at origin and
x-intercepts = ± 5
y-intercepts = ± 3 | Ay 3 3 5 5 x | | a, b have
different signs | hyperbola | x² - y² = 9
hyperbola with center
at origin and
x-intercepts = ±3
no y-intercepts | -3) O 3 | Recall: The equation of a parabola contains only one square term: either $y = ax^2 + bx + c$ or $x = ay^2 + by + c$ The equation of a straight line contains no square terms: ax + by = c ## EXERCISES = - In 1-14, identify the graph of the given relation as - (1) a circle - (3) a hyperbola - (2) an ellipse - (4) a parabola - 1. $4y^2 = 25 4x^2$ - 8. $4x^2 + 16y^2 = 25$ - $2. \ 2x^2 + 3y^2 = 24$ - 9. $x^2 + y = 9$ - 3. $x^2 = y^2 + 9$ - 4. $x^2 = 6 y$ - 10. $2x^2 = 5 2y^2$ - 11. $y^2 = 6 3x^2$ - 5. $4x^2 100 = 25y^2$ - 12. $2x^2 9 = 2y^2$ - 6. $3y^2 = 6 x^2$ - 13. $4x^2 4y^2 = 9$ - 7. $3x^2 + 2y^2 = 6$ - 14. $x^2 \frac{y^2}{16} = 1$ - 15. Which of the following is the equation of a hyperbola? - (1) $x^2 = 10 y^2$ - $(3) \ y^2 = x^2 1$ - (2) $x = y^2 9$ - $(4) \ 4x^2 + y^2 = 9$ - 16. The graph of which equation is an ellipse? - $(1) \ 3x^2 4y^2 = 7$ - (3) $y = 2x^2 + 3x 5$ - (2) $\frac{y+6}{x-1} = 3$ - $(4) \ x^2 + 5y^2 = 2$ - 17. Which is an equation of a circle? - $(1) \ 2x^2 2y^2 = 18$ - $(3) \ 3x^2 + 3y^2 = 21$ - $(2) \ 2x^2 + 3y^2 = 36$ - (4) $x^2 = y^2 + 16$ - 18. Which equation has a hyperbola as its graph? - (1) $x^2 = 10 + y$ - (3) $3x^2 = 10 2y^2$ (4) $3x^2 = 10 + 2y^2$ - (2) $x^2 = 10 y^2$ - 19. Which equation has an ellipse as its graph? - (1) $2x^2 = 8 3y$ - (3) $2x^2 = 8 3y^2$ - (2) $2x^2 = 8 + 3y^2$ - (4) 2x = 8 3y - 20. Which is an equation of a circle? - $(1) 2x^2 + y^2 = 7$ - (3) $x^2 y^2 = 10$ - (2) $x = \frac{y}{9}$ - (4) $5(x^2 + y^2) = 12$ - 21. Which is an equation of a parabola? - (1) $x^2 = 3 + y^2$ (2) $x = 3 + y^2$ - (3) x = 3 + y(4) $y^2 = 3x^2 + 3$ - **22.** The graph of the relation $ay = bx^2 + c$ in which neither a nor b is 0 is - (1) a parabola - (3) an ellipse - (2) a straight line - (4) a hyperbola - 23. If a, b, and c are positive unequal numbers, the graph of $ax^2 + by^2 = c$ is - (1) a circle - (3) an ellipse - (2) a parabola - (4) a hyperbola - **24.** The graph of $ax^2 + by^2 = c$, in which a, b, and c are real numbers, is an ellipse if - (1) a = b, a > 0, b < 0, c > 0 - (2) a = b, a > 0, b > 0, c < 0 - (3) $a \neq b, a > 0, b > 0, c > 0$ - (4) $a \neq b, a > 0, b < 0, c > 0$ - **25.** If $a \neq 0$, $b \neq 0$, and $c \neq 0$, the graph of $ax^2 + by^2 = c$ can not be - (1) an ellipse - (3) a parabola - (2) a circle - (4) a hyperbola - **26.** The graph of the equation $\frac{x^2}{4} + \frac{y^2}{16} = 1$ passes through the point whose coordinates are - (1) (0,0) (2) (0,2) (3) (0,4) (4) (4,0) - 27. Which relation is a function? - (1) $\{(x, y) | x^2 + y = 4\}$ (3) $\{(x, y) | x^2 y^2 = 4\}$ (2) $\{(x, y) | x^2 + y^2 = 4\}$ (4) $\{(x, y) | x^2 + 4y^2 = 4\}$ - 28. If the replacement set is the set of real numbers. what is the domain of the relation represented by $\{(x, y) | x^2 + 4y^2 = 16\}$? - (1) $\{y \mid -2 \le y \le 2\}$ (3) $\{x \mid -4 \le x \le 4\}$ (2) $\{y \mid -2 < y < 2\}$ (4) $\{x \mid -4 < x < 4\}$ - 29. Which is the graph of a quadratic relation for which the domain consists of all the real numbers? - **30.** If the graphs of the equations $x^2 + y^2 = 9$ and y = 3are drawn on the same set of axes, what is the total number of points common to both graphs? - (1) 1 - (2) 2 - (3) 3 - (4) 0 - 31. When drawn on the same set of axes, the points of intersection of the graphs of $x^2 + y^2 = 16$ and x = 2are located in quadrants - (1) I and III - (3) II and III - (2) I and IV - (4) II and IV - **32.** The graphs of the equations $x^2 + y^2 = 25$ and $y = x^2$ are drawn on the same set of axes. The total number of points common to these graphs is - (1) 1 - (2) 2 - (3) 3 - **33.** The graph of $x^2 + y^2 = 25$ and the graph of x - 4 = 0 are drawn on the same set of axes. A point of intersection of the graphs is - (1) (5,0) (2) (-4,-3) (3) (4,-3) (4) (-3,4) - **34.** What is the graph of the solution set of $x^2 + y^2 > 9$? 35. Each equation in column A has one of the geometric figures in column B as its graph. List the numbers 1-5 on your answer paper and after each number write the letter that indicates the corresponding graph. ## Column A - (1) $x^2 + y^2 4 = 0$ - (2) $4x^2 + y^2 1 = 0$ - (3) $x^2 y 4 = 0$ - (4) $x^2 + 4y^2 = 0$ - $(5) \ x^2 4y^2 = 0$ ## Column B - a. The point (0, 0) - b. Two straight lines parallel to the y-axis - c. Two straight lines intersecting at the origin - d. A parabola that crosses the y-axis at (0, -4) - e. A circle whose center is the origin and whose radius is 2 - f. An ellipse that crosses the y-axis at (0, 1) and (0, -1) - g. A hyperbola that crosses the y-axis at (0, 2) and (0, -2)