Name:
AP Calculus AB: Total Distance

Date:
Ms. Loughran

Let $s(t)$ represent the position of a particle at time t. We know that $s^{\prime}(t)=v(t)$. In other words,

What does $\int_{t_{1}}^{t_{2}} v(t) d t$ represent?

How would we find the total distance traveled by the particle over the interval $\left[t_{1}, t_{2}\right]$?

Therefore, total distance $=$

If $v \geq 0$,

Examples:

1. A particle moves along the x-axis according to $s(t)=2 t^{3}-21 t^{2}+60 t-14$. Find the total distance traveled from $t=0$ to $t=7$.
2. A particle moves along the x-axis with acceleration $a(t)=2 t-3, t \geq 0$. At $t=0, \mathrm{v}=2$. Find the total distance traveled from $t=0$ to $t=3$.
